Spaces:
Sleeping
Sleeping
File size: 17,524 Bytes
bedcf36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import streamlit as st #line:1
import pandas as pd #line:2
uploaded_file =st .file_uploader ("Choose product file",type ="csv")#line:4
if uploaded_file :#line:6
df =pd .read_csv (uploaded_file ,encoding ='utf8')#line:8
uploaded_file2 =st .file_uploader ("Choose inventory file",type ="csv")#line:11
if uploaded_file2 :#line:13
df2 =pd .read_csv (uploaded_file2 ,encoding ='utf8')#line:15
def ConvertCitrus (O00O000OOOO0O00O0 ,OOO0O0O0OOO0O00O0 ):#line:21
import RemoveHTMLtags as RHT #line:24
O0OOOOOO00O000OO0 =str ('<style type=')+str ('"')+str ('"')+str ('text/css')+str ('"')+str ('"')+str ('><!--')#line:32
OOOO00O00000O00O0 =['<p class=','"p1"','data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>','</p>','<p*>','<ul>','</ul>','</i>','</b>','</p>','</br>','<li>','</li>','<br>','<strong>','</strong>','<span*>','</span>','"utf-8"','UTF-8','<a href*>','</a>','<meta charset=utf-8>',';;','<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']#line:41
for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in O00O000OOOO0O00O0 .iterrows ():#line:55
O00O000OOOO0O00O0 .iloc [O0OO0OOOOO0O0O000 ,2 ]=RHT .remove_tags (str (O00O000OOOO0O00O0 .iloc [O0OO0OOOOO0O0O000 ,2 ]))#line:56
print (O00O000OOOO0O00O0 .iloc [:,2 ])#line:58
O00O000OOOO0O00O0 .iloc [:,2 ]=pd .Series (O00O000OOOO0O00O0 .iloc [:,2 ],dtype ="string")#line:63
print (O00O000OOOO0O00O0 .iloc [:,2 ].dtype )#line:64
O0000OOOOO000000O =O00O000OOOO0O00O0 .columns .tolist ()#line:88
O0000OO0OOO0OOO0O =O0000OOOOO000000O .copy ()#line:89
O0000OO0OOO0OOO0O [1 ]=O0000OOOOO000000O [1 ]#line:90
O0000OO0OOO0OOO0O [17 ]=O0000OOOOO000000O [17 ]#line:92
OO00O0000O0OO0000 =O00O000OOOO0O00O0 [O0000OO0OOO0OOO0O ].copy (deep =True )#line:113
print ("SKU")#line:114
print (O00O000OOOO0O00O0 .iloc [:,24 ])#line:115
OO0OO000O0OO0000O =O00O000OOOO0O00O0 .copy (deep =True )#line:117
OO00O0000O0OO0000 .iloc [:,0 ]=OO0OO000O0OO0000O .iloc [:,13 ].copy (deep =True )#line:119
OO00O0000O0OO0000 .iloc [:,5 ]=OO0OO000O0OO0000O .iloc [:,20 ].copy (deep =True )#line:120
OO00O0000O0OO0000 .iloc [:,7 ]=OO0OO000O0OO0000O .iloc [:,11 ].copy (deep =True )#line:121
OO00O0000O0OO0000 .iloc [:,2 ]=OO0OO000O0OO0000O .iloc [:,24 ].copy (deep =True )#line:123
OO00O0000O0OO0000 .iloc [:,8 ]=OO0OO000O0OO0000O .iloc [:,9 ].copy (deep =True )#line:125
OO00O0000O0OO0000 .iloc [:,10 ]=OO0OO000O0OO0000O .iloc [:,3 ].copy (deep =True )#line:126
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [10 ]:'Brand'},inplace =True )#line:127
OO00O0000O0OO0000 .columns .values [10 ]='Brand'#line:128
OO00O0000O0OO0000 .iloc [:,30 ]=OO0OO000O0OO0000O .iloc [:,15 ].copy (deep =True )#line:130
OO00O0000O0OO0000 .iloc [:,31 ]=OO0OO000O0OO0000O .iloc [:,5 ].copy (deep =True )#line:131
OO00O0000O0OO0000 .iloc [:,32 ]=OO0OO000O0OO0000O .iloc [:,2 ].copy (deep =True )#line:132
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [8 ]:'Size 1'},inplace =True )#line:134
print (list (OO00O0000O0OO0000 .columns .values ))#line:136
OO00O0000O0OO0000 .iloc [:,20 ]=OO00O0000O0OO0000 .iloc [:,20 ].astype (float )#line:139
OO00O0000O0OO0000 .iloc [:,4 ]=(((OO00O0000O0OO0000 .iloc [:,20 ]/1.2 )/1.96 )*0.96 )#line:141
from babel .numbers import format_currency #line:142
OO00O0000O0OO0000 .iloc [:,4 ]=OO00O0000O0OO0000 .iloc [:,4 ].apply (lambda O0OOO0O00OOO0OO0O :format_currency (O0OOO0O00OOO0OO0O ,currency ="GBP",locale ="en_GB"))#line:143
OO00O0000O0OO0000 .iloc [:,5 ]=OO00O0000O0OO0000 .iloc [:,5 ].apply (lambda O000O0OO000O0000O :format_currency (O000O0OO000O0000O ,currency ="GBP",locale ="en_GB"))#line:144
print (((OO00O0000O0OO0000 .iloc [:,20 ]/1.2 )/1.96 )*0.96 )#line:146
OO00O0000O0OO0000 .iloc [:,2 ]=OO00O0000O0OO0000 .iloc [:,2 ].astype (str ).str .replace ("'","")#line:148
OO00O0000O0OO0000 .iloc [:,24 ]=OO00O0000O0OO0000 .iloc [:,24 ].astype (str ).str .replace ("'","")#line:152
print ("SKU")#line:154
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:155
print (list (OO00O0000O0OO0000 .columns .values ))#line:174
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:179
for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .iterrows ():#line:182
if O0OO0OOOOO0O0O000 ==0 :#line:183
print (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)'])#line:184
if " mens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:185
if " womens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:186
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Unisex"#line:187
else :#line:188
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Mens"#line:189
if " womens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:191
if " mens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:192
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Unisex"#line:193
else :#line:194
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Womens"#line:195
if " ladys"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:196
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Ladys"#line:197
if O0OO0OOOOO0O0O000 ==0 :#line:198
print (O0O0O00O00OO00OO0 [12 ])#line:199
print (OO00O0000O0OO0000 .iloc [:,12 ])#line:200
OO00O0000O0OO0000 .iloc [:,6 ]=""#line:204
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [0 ]:'Style Number'},inplace =True )#line:206
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [1 ]:'Product Name'},inplace =True )#line:207
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [2 ]:'Vendor SKU'},inplace =True )#line:208
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [3 ]:'UPC/EAN'},inplace =True )#line:209
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [4 ]:'Unit Cost'},inplace =True )#line:210
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [5 ]:'Unit MSRP'},inplace =True )#line:211
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:212
print (OO00O0000O0OO0000 .columns [6 ])#line:213
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [7 ]:'Colour'},inplace =True )#line:214
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [8 ]:'Size 1'},inplace =True )#line:216
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [9 ]:'Size 2'},inplace =True )#line:217
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [10 ]:'Brand'},inplace =True )#line:218
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [11 ]:'Year of Season'},inplace =True )#line:219
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [12 ]:'Gender'},inplace =True )#line:220
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [13 ]:'Manufacturer Part Code'},inplace =True )#line:221
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [14 ]:'Other Bar Code'},inplace =True )#line:222
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [15 ]:'VAT'},inplace =True )#line:223
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [16 ]:'Pack Qty'},inplace =True )#line:224
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [17 ]:'Stock Count'},inplace =True )#line:226
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [18 ]:'Price Band 1'},inplace =True )#line:227
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [19 ]:'Price Band 2'},inplace =True )#line:228
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [20 ]:'IE VAT'},inplace =True )#line:229
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [21 ]:'Unit Cost in Euros'},inplace =True )#line:230
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [22 ]:'MSRP in Euros'},inplace =True )#line:231
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [23 ]:'Commodity Codes'},inplace =True )#line:233
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [24 ]:'Country of Origin'},inplace =True )#line:234
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [30 ]:'Weight'},inplace =True )#line:236
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [31 ]:'Short Description'},inplace =True )#line:237
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [32 ]:'Long Description'},inplace =True )#line:238
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [33 ]:'Video Link'},inplace =True )#line:239
OO00O0000O0OO0000 .iloc [:,9 ]=""#line:247
OO00O0000O0OO0000 .iloc [:,13 ]=""#line:249
OO00O0000O0OO0000 .iloc [:,14 ]=""#line:251
OO00O0000O0OO0000 .iloc [:,16 ]=""#line:253
OO00O0000O0OO0000 .iloc [:,18 ]=""#line:255
OO00O0000O0OO0000 .iloc [:,19 ]=""#line:257
OO00O0000O0OO0000 .iloc [:,20 ]=""#line:259
OO00O0000O0OO0000 .iloc [:,21 ]=""#line:261
OO00O0000O0OO0000 .iloc [:,22 ]=""#line:263
OO00O0000O0OO0000 .iloc [:,33 ]=""#line:268
OO00O0000O0OO0000 .iloc [:,15 ]="20"#line:273
print (list (OO00O0000O0OO0000 .columns .values ))#line:275
OO00O0000O0OO0000 .iloc [:,3 ]=OO00O0000O0OO0000 .iloc [:,2 ]#line:278
OO00O0000O0OO0000 .columns .values [10 ]='Brand'#line:279
OO00O0000O0OO0000 .iloc [:,11 ]=""#line:280
OO00O0000O0OO0000 .iloc [:,22 ]=""#line:281
print ("SKU")#line:285
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:286
OO00O0000O0OO0000 .iloc [:,23 ]=""#line:291
OO00O0000O0OO0000 .iloc [:,24 ]=""#line:294
OO0OOOO0O0OOO00O0 =O00O000OOOO0O00O0 ['Variant SKU']#line:303
OO0O00O00O00OO0O0 =O00O000OOOO0O00O0 ['Variant SKU'].duplicated ().any ()#line:304
OO0O00O00O00OO0O0 =OOO0O0O0OOO0O00O0 ['SKU'].duplicated ().any ()#line:306
O000OO000O0000O00 =OOO0O0O0OOO0O00O0 [OOO0O0O0OOO0O00O0 .duplicated (['SKU'],keep =False )]#line:308
OOOO0OO00O0O00000 =O00O000OOOO0O00O0 [O00O000OOOO0O00O0 .duplicated (['Variant SKU'],keep =False )]#line:311
OOO0O0O0OOO0O00O0 =OOO0O0O0OOO0O00O0 .set_index ('SKU')#line:315
OOO0O0O0OOO0O00O0 .reindex (OO0OOOO0O0OOO00O0 )#line:320
print ("TERMINE")#line:337
OO00O0000O0OO0000 .iloc [:,24 ]=OOO0O0O0OOO0O00O0 .loc [:,'COO']#line:339
OO00O0000O0OO0000 .iloc [:,23 ]=OOO0O0O0OOO0O00O0 .loc [:,'HS Code']#line:340
OO00O0000O0OO0000 ['Commodity Codes']=OOO0O0O0OOO0O00O0 ['HS Code'].values #line:342
OO00O0000O0OO0000 ['Country of Origin']=OOO0O0O0OOO0O00O0 ['COO'].values #line:343
print ("SKU")#line:350
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:351
OO00O00OOOO0O00O0 =[]#line:356
for OO0OOOO000OO0OO00 in range (49 ,58 ):#line:357
OO00O00OOOO0O00O0 .append (str (OO0OOOO000OO0OO00 ))#line:359
OO00O0000O0OO0000 [str (OO0OOOO000OO0OO00 )]=''#line:360
O0000000OOOOO0O0O =[]#line:364
for OO0OOOO000OO0OO00 in range (0 ,24 ):#line:365
O0000000OOOOO0O0O .append (34 +OO0OOOO000OO0OO00 )#line:366
OOOO0OO0OO0OO0OOO =OO00O0000O0OO0000 .columns [O0000000OOOOO0O0O ]#line:372
O000000O00OOO000O =['Tech Specs','Size Chart','Geometry Chart','Frame','Rear Shock','Fork','Headset','Stem','Handlebar','Bar Tape / Grip','Brakes Levers','Brake Calipers','Tyres','Wheels','Front Derailleur','Rear Derailleur','Shift Levers','Chain','Cassette','Chainset','Bottom Bracket','Pedals','Saddle','Seatpost']#line:373
OOOO0OO0OO0OO0OOO =OO00O0000O0OO0000 .columns [O0000000OOOOO0O0O ]#line:374
OO00O0000O0OO0000 .rename (columns =dict (zip (OOOO0OO0OO0OO0OOO ,O000000O00OOO000O )),inplace =True )#line:375
OO00O0000O0OO0000 .iloc [:,34 :58 ]=''#line:378
print ("SKUf")#line:381
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:382
O0O0OO000OO0OO000 =OO00O0000O0OO0000 .loc [pd .isna (OO00O0000O0OO0000 .loc [:,'Product Name']),:].index #line:402
O000O00000000O0O0 =OO00O0000O0OO0000 .loc [O0O0OO000OO0OO000 ,'Image Src']#line:403
O00O00OO0OO000OOO =[]#line:404
for O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .index :#line:405
if pd .notna (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 ,'Product Name']):#line:407
OO00O0OOOO000O0OO =O0O0O00O00OO00OO0 #line:409
OO0OOOO000OO0OO00 =1 #line:410
OO000OOOOO0OOOO0O =[]#line:412
OO000OOOOO0OOOO0O .append (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 ,'Image Src'])#line:414
while pd .isna (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Product Name'])and O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 <len (OO00O0000O0OO0000 .index )-1 :#line:415
if "http"in str (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Image Src']):#line:417
OO000OOOOO0OOOO0O .append (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Image Src'])#line:418
OO0OOOO000OO0OO00 =OO0OOOO000OO0OO00 +1 #line:419
O00O00OO0OO000OOO .append (OO000OOOOO0OOOO0O )#line:420
O00OOO00O0OOOOOOO =OO00O0000O0OO0000 .loc [pd .notna (OO00O0000O0OO0000 .loc [:,'Product Name']),:].index #line:423
OOOOOO00O00OO000O =0 #line:424
for OO0OOOO000OO0OO00 in range (len (O00O00OO0OO000OOO )):#line:425
if OOOOOO00O00OO000O <len (O00O00OO0OO000OOO [OO0OOOO000OO0OO00 ]):#line:426
OOOOOO00O00OO000O =len (O00O00OO0OO000OOO [OO0OOOO000OO0OO00 ])#line:427
print ("SKUf")#line:428
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:429
for OO0O0000OO0O0O0OO in range (OOOOOO00O00OO000O ):#line:433
OO00O0000O0OO0000 .iloc [:,25 +OO0O0000OO0O0O0OO ]=''#line:434
O00OO0OOOOO0O000O =0 #line:436
for O0OO0OOOOO0O0O000 in O00OOO00O0OOOOOOO :#line:437
for OO0O0000OO0O0O0OO in range (len (O00O00OO0OO000OOO [O00OO0OOOOO0O000O ])):#line:438
if O00O00OO0OO000OOO [O00OO0OOOOO0O000O ][OO0O0000OO0O0O0OO ]!='nan':#line:441
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]=O00O00OO0OO000OOO [O00OO0OOOOO0O000O ][OO0O0000OO0O0O0OO ]#line:442
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [25 +OO0O0000OO0O0O0OO ]:'Image'+str (OO0O0000OO0O0O0OO +1 )},inplace =True )#line:443
O00OO0OOOOO0O000O =O00OO0OOOOO0O000O +1 #line:445
print ("SKUf")#line:446
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:447
OO0OOO000OO0O0O0O =[None ]*OOOOOO00O00OO000O #line:449
OOOOO00O0OOOOOOOO =[None ]*OOOOOO00O00OO000O #line:450
O0O0O0000O0OO0OOO =[None ]*OOOOOO00O00OO000O #line:451
O000O0O0OO00OOO00 =[None ]*OOOOOO00O00OO000O #line:452
O0O0000O00O000OO0 =[None ]*OOOOOO00O00OO000O #line:453
O0000O0O000O0OO00 =[None ]*OOOOOO00O00OO000O #line:454
for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .iterrows ():#line:455
if pd .notna (OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]):#line:458
for OO0O0000OO0O0O0OO in range (0 ,OOOOOO00O00OO000O ):#line:459
OO0OOO000OO0O0O0O [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]))#line:460
OOOOO00O0OOOOOOOO [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]))#line:466
O0O0O0000O0OO0OOO [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,10 ]))#line:467
O000O0O0OO00OOO00 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]))#line:468
O0O0000O00O000OO0 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,31 ]))#line:469
O0000O0O000O0OO00 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,32 ]))#line:470
else :#line:472
for OO0O0000OO0O0O0OO in range (0 ,OOOOOO00O00OO000O ):#line:473
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]=OO0OOO000OO0O0O0O [OO0O0000OO0O0O0OO ]#line:474
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]=OOOOO00O0OOOOOOOO [OO0O0000OO0O0O0OO ]#line:480
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,10 ]=O0O0O0000O0OO0OOO [OO0O0000OO0O0O0OO ]#line:481
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]=O000O0O0OO00OOO00 [OO0O0000OO0O0O0OO ]#line:482
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,31 ]=O0O0000O00O000OO0 [OO0O0000OO0O0O0OO ]#line:483
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,32 ]=O0000O0O000O0OO00 [OO0O0000OO0O0O0OO ]#line:484
print ("SKUf")#line:488
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:489
return OO00O0000O0OO0000 #line:498
def convert_df (OO00OO0O00O00OOOO ):#line:501
return OO00OO0O00O00OOOO .to_csv (index =False ).encode ('utf_8_sig')#line:502
if uploaded_file and uploaded_file2 :#line:504
df3 =ConvertCitrus (df ,df2 )#line:505
csv =convert_df (df3 )#line:509
st .download_button ("Press to Download",csv ,"file.csv","text/csv",key ='download-csv') |