File size: 17,524 Bytes
bedcf36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import streamlit as st #line:1
import pandas as pd #line:2
uploaded_file =st .file_uploader ("Choose product file",type ="csv")#line:4
if uploaded_file :#line:6
    df =pd .read_csv (uploaded_file ,encoding ='utf8')#line:8
uploaded_file2 =st .file_uploader ("Choose inventory file",type ="csv")#line:11
if uploaded_file2 :#line:13
    df2 =pd .read_csv (uploaded_file2 ,encoding ='utf8')#line:15
def ConvertCitrus (O00O000OOOO0O00O0 ,OOO0O0O0OOO0O00O0 ):#line:21
    import RemoveHTMLtags as RHT #line:24
    O0OOOOOO00O000OO0 =str ('<style type=')+str ('"')+str ('"')+str ('text/css')+str ('"')+str ('"')+str ('><!--')#line:32
    OOOO00O00000O00O0 =['<p class=','"p1"','data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>','</p>','<p*>','<ul>','</ul>','</i>','</b>','</p>','</br>','<li>','</li>','<br>','<strong>','</strong>','<span*>','</span>','"utf-8"','UTF-8','<a href*>','</a>','<meta charset=utf-8>',';;','<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']#line:41
    for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in O00O000OOOO0O00O0 .iterrows ():#line:55
        O00O000OOOO0O00O0 .iloc [O0OO0OOOOO0O0O000 ,2 ]=RHT .remove_tags (str (O00O000OOOO0O00O0 .iloc [O0OO0OOOOO0O0O000 ,2 ]))#line:56
    print (O00O000OOOO0O00O0 .iloc [:,2 ])#line:58
    O00O000OOOO0O00O0 .iloc [:,2 ]=pd .Series (O00O000OOOO0O00O0 .iloc [:,2 ],dtype ="string")#line:63
    print (O00O000OOOO0O00O0 .iloc [:,2 ].dtype )#line:64
    O0000OOOOO000000O =O00O000OOOO0O00O0 .columns .tolist ()#line:88
    O0000OO0OOO0OOO0O =O0000OOOOO000000O .copy ()#line:89
    O0000OO0OOO0OOO0O [1 ]=O0000OOOOO000000O [1 ]#line:90
    O0000OO0OOO0OOO0O [17 ]=O0000OOOOO000000O [17 ]#line:92
    OO00O0000O0OO0000 =O00O000OOOO0O00O0 [O0000OO0OOO0OOO0O ].copy (deep =True )#line:113
    print ("SKU")#line:114
    print (O00O000OOOO0O00O0 .iloc [:,24 ])#line:115
    OO0OO000O0OO0000O =O00O000OOOO0O00O0 .copy (deep =True )#line:117
    OO00O0000O0OO0000 .iloc [:,0 ]=OO0OO000O0OO0000O .iloc [:,13 ].copy (deep =True )#line:119
    OO00O0000O0OO0000 .iloc [:,5 ]=OO0OO000O0OO0000O .iloc [:,20 ].copy (deep =True )#line:120
    OO00O0000O0OO0000 .iloc [:,7 ]=OO0OO000O0OO0000O .iloc [:,11 ].copy (deep =True )#line:121
    OO00O0000O0OO0000 .iloc [:,2 ]=OO0OO000O0OO0000O .iloc [:,24 ].copy (deep =True )#line:123
    OO00O0000O0OO0000 .iloc [:,8 ]=OO0OO000O0OO0000O .iloc [:,9 ].copy (deep =True )#line:125
    OO00O0000O0OO0000 .iloc [:,10 ]=OO0OO000O0OO0000O .iloc [:,3 ].copy (deep =True )#line:126
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [10 ]:'Brand'},inplace =True )#line:127
    OO00O0000O0OO0000 .columns .values [10 ]='Brand'#line:128
    OO00O0000O0OO0000 .iloc [:,30 ]=OO0OO000O0OO0000O .iloc [:,15 ].copy (deep =True )#line:130
    OO00O0000O0OO0000 .iloc [:,31 ]=OO0OO000O0OO0000O .iloc [:,5 ].copy (deep =True )#line:131
    OO00O0000O0OO0000 .iloc [:,32 ]=OO0OO000O0OO0000O .iloc [:,2 ].copy (deep =True )#line:132
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [8 ]:'Size 1'},inplace =True )#line:134
    print (list (OO00O0000O0OO0000 .columns .values ))#line:136
    OO00O0000O0OO0000 .iloc [:,20 ]=OO00O0000O0OO0000 .iloc [:,20 ].astype (float )#line:139
    OO00O0000O0OO0000 .iloc [:,4 ]=(((OO00O0000O0OO0000 .iloc [:,20 ]/1.2 )/1.96 )*0.96 )#line:141
    from babel .numbers import format_currency #line:142
    OO00O0000O0OO0000 .iloc [:,4 ]=OO00O0000O0OO0000 .iloc [:,4 ].apply (lambda O0OOO0O00OOO0OO0O :format_currency (O0OOO0O00OOO0OO0O ,currency ="GBP",locale ="en_GB"))#line:143
    OO00O0000O0OO0000 .iloc [:,5 ]=OO00O0000O0OO0000 .iloc [:,5 ].apply (lambda O000O0OO000O0000O :format_currency (O000O0OO000O0000O ,currency ="GBP",locale ="en_GB"))#line:144
    print (((OO00O0000O0OO0000 .iloc [:,20 ]/1.2 )/1.96 )*0.96 )#line:146
    OO00O0000O0OO0000 .iloc [:,2 ]=OO00O0000O0OO0000 .iloc [:,2 ].astype (str ).str .replace ("'","")#line:148
    OO00O0000O0OO0000 .iloc [:,24 ]=OO00O0000O0OO0000 .iloc [:,24 ].astype (str ).str .replace ("'","")#line:152
    print ("SKU")#line:154
    print (OO00O0000O0OO0000 .iloc [:,2 ])#line:155
    print (list (OO00O0000O0OO0000 .columns .values ))#line:174
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:179
    for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .iterrows ():#line:182
        if O0OO0OOOOO0O0O000 ==0 :#line:183
            print (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)'])#line:184
        if " mens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:185
            if " womens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:186
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Unisex"#line:187
            else :#line:188
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Mens"#line:189
        if " womens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:191
            if " mens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:192
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Unisex"#line:193
            else :#line:194
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Womens"#line:195
        if " ladys"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:196
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Ladys"#line:197
        if O0OO0OOOOO0O0O000 ==0 :#line:198
            print (O0O0O00O00OO00OO0 [12 ])#line:199
    print (OO00O0000O0OO0000 .iloc [:,12 ])#line:200
    OO00O0000O0OO0000 .iloc [:,6 ]=""#line:204
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [0 ]:'Style Number'},inplace =True )#line:206
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [1 ]:'Product Name'},inplace =True )#line:207
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [2 ]:'Vendor SKU'},inplace =True )#line:208
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [3 ]:'UPC/EAN'},inplace =True )#line:209
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [4 ]:'Unit Cost'},inplace =True )#line:210
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [5 ]:'Unit MSRP'},inplace =True )#line:211
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:212
    print (OO00O0000O0OO0000 .columns [6 ])#line:213
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [7 ]:'Colour'},inplace =True )#line:214
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [8 ]:'Size 1'},inplace =True )#line:216
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [9 ]:'Size 2'},inplace =True )#line:217
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [10 ]:'Brand'},inplace =True )#line:218
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [11 ]:'Year of Season'},inplace =True )#line:219
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [12 ]:'Gender'},inplace =True )#line:220
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [13 ]:'Manufacturer Part Code'},inplace =True )#line:221
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [14 ]:'Other Bar Code'},inplace =True )#line:222
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [15 ]:'VAT'},inplace =True )#line:223
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [16 ]:'Pack Qty'},inplace =True )#line:224
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [17 ]:'Stock Count'},inplace =True )#line:226
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [18 ]:'Price Band 1'},inplace =True )#line:227
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [19 ]:'Price Band 2'},inplace =True )#line:228
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [20 ]:'IE VAT'},inplace =True )#line:229
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [21 ]:'Unit Cost in Euros'},inplace =True )#line:230
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [22 ]:'MSRP in Euros'},inplace =True )#line:231
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [23 ]:'Commodity Codes'},inplace =True )#line:233
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [24 ]:'Country of Origin'},inplace =True )#line:234
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [30 ]:'Weight'},inplace =True )#line:236
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [31 ]:'Short Description'},inplace =True )#line:237
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [32 ]:'Long Description'},inplace =True )#line:238
    OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [33 ]:'Video Link'},inplace =True )#line:239
    OO00O0000O0OO0000 .iloc [:,9 ]=""#line:247
    OO00O0000O0OO0000 .iloc [:,13 ]=""#line:249
    OO00O0000O0OO0000 .iloc [:,14 ]=""#line:251
    OO00O0000O0OO0000 .iloc [:,16 ]=""#line:253
    OO00O0000O0OO0000 .iloc [:,18 ]=""#line:255
    OO00O0000O0OO0000 .iloc [:,19 ]=""#line:257
    OO00O0000O0OO0000 .iloc [:,20 ]=""#line:259
    OO00O0000O0OO0000 .iloc [:,21 ]=""#line:261
    OO00O0000O0OO0000 .iloc [:,22 ]=""#line:263
    OO00O0000O0OO0000 .iloc [:,33 ]=""#line:268
    OO00O0000O0OO0000 .iloc [:,15 ]="20"#line:273
    print (list (OO00O0000O0OO0000 .columns .values ))#line:275
    OO00O0000O0OO0000 .iloc [:,3 ]=OO00O0000O0OO0000 .iloc [:,2 ]#line:278
    OO00O0000O0OO0000 .columns .values [10 ]='Brand'#line:279
    OO00O0000O0OO0000 .iloc [:,11 ]=""#line:280
    OO00O0000O0OO0000 .iloc [:,22 ]=""#line:281
    print ("SKU")#line:285
    print (OO00O0000O0OO0000 .iloc [:,2 ])#line:286
    OO00O0000O0OO0000 .iloc [:,23 ]=""#line:291
    OO00O0000O0OO0000 .iloc [:,24 ]=""#line:294
    OO0OOOO0O0OOO00O0 =O00O000OOOO0O00O0 ['Variant SKU']#line:303
    OO0O00O00O00OO0O0 =O00O000OOOO0O00O0 ['Variant SKU'].duplicated ().any ()#line:304
    OO0O00O00O00OO0O0 =OOO0O0O0OOO0O00O0 ['SKU'].duplicated ().any ()#line:306
    O000OO000O0000O00 =OOO0O0O0OOO0O00O0 [OOO0O0O0OOO0O00O0 .duplicated (['SKU'],keep =False )]#line:308
    OOOO0OO00O0O00000 =O00O000OOOO0O00O0 [O00O000OOOO0O00O0 .duplicated (['Variant SKU'],keep =False )]#line:311
    OOO0O0O0OOO0O00O0 =OOO0O0O0OOO0O00O0 .set_index ('SKU')#line:315
    OOO0O0O0OOO0O00O0 .reindex (OO0OOOO0O0OOO00O0 )#line:320
    print ("TERMINE")#line:337
    OO00O0000O0OO0000 .iloc [:,24 ]=OOO0O0O0OOO0O00O0 .loc [:,'COO']#line:339
    OO00O0000O0OO0000 .iloc [:,23 ]=OOO0O0O0OOO0O00O0 .loc [:,'HS Code']#line:340
    OO00O0000O0OO0000 ['Commodity Codes']=OOO0O0O0OOO0O00O0 ['HS Code'].values #line:342
    OO00O0000O0OO0000 ['Country of Origin']=OOO0O0O0OOO0O00O0 ['COO'].values #line:343
    print ("SKU")#line:350
    print (OO00O0000O0OO0000 .iloc [:,2 ])#line:351
    OO00O00OOOO0O00O0 =[]#line:356
    for OO0OOOO000OO0OO00 in range (49 ,58 ):#line:357
        OO00O00OOOO0O00O0 .append (str (OO0OOOO000OO0OO00 ))#line:359
        OO00O0000O0OO0000 [str (OO0OOOO000OO0OO00 )]=''#line:360
    O0000000OOOOO0O0O =[]#line:364
    for OO0OOOO000OO0OO00 in range (0 ,24 ):#line:365
        O0000000OOOOO0O0O .append (34 +OO0OOOO000OO0OO00 )#line:366
    OOOO0OO0OO0OO0OOO =OO00O0000O0OO0000 .columns [O0000000OOOOO0O0O ]#line:372
    O000000O00OOO000O =['Tech Specs','Size Chart','Geometry Chart','Frame','Rear Shock','Fork','Headset','Stem','Handlebar','Bar Tape / Grip','Brakes Levers','Brake Calipers','Tyres','Wheels','Front Derailleur','Rear Derailleur','Shift Levers','Chain','Cassette','Chainset','Bottom Bracket','Pedals','Saddle','Seatpost']#line:373
    OOOO0OO0OO0OO0OOO =OO00O0000O0OO0000 .columns [O0000000OOOOO0O0O ]#line:374
    OO00O0000O0OO0000 .rename (columns =dict (zip (OOOO0OO0OO0OO0OOO ,O000000O00OOO000O )),inplace =True )#line:375
    OO00O0000O0OO0000 .iloc [:,34 :58 ]=''#line:378
    print ("SKUf")#line:381
    print (OO00O0000O0OO0000 .iloc [:,2 ])#line:382
    O0O0OO000OO0OO000 =OO00O0000O0OO0000 .loc [pd .isna (OO00O0000O0OO0000 .loc [:,'Product Name']),:].index #line:402
    O000O00000000O0O0 =OO00O0000O0OO0000 .loc [O0O0OO000OO0OO000 ,'Image Src']#line:403
    O00O00OO0OO000OOO =[]#line:404
    for O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .index :#line:405
        if pd .notna (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 ,'Product Name']):#line:407
            OO00O0OOOO000O0OO =O0O0O00O00OO00OO0 #line:409
            OO0OOOO000OO0OO00 =1 #line:410
            OO000OOOOO0OOOO0O =[]#line:412
            OO000OOOOO0OOOO0O .append (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 ,'Image Src'])#line:414
            while pd .isna (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Product Name'])and O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 <len (OO00O0000O0OO0000 .index )-1 :#line:415
                if "http"in str (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Image Src']):#line:417
                    OO000OOOOO0OOOO0O .append (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Image Src'])#line:418
                OO0OOOO000OO0OO00 =OO0OOOO000OO0OO00 +1 #line:419
            O00O00OO0OO000OOO .append (OO000OOOOO0OOOO0O )#line:420
    O00OOO00O0OOOOOOO =OO00O0000O0OO0000 .loc [pd .notna (OO00O0000O0OO0000 .loc [:,'Product Name']),:].index #line:423
    OOOOOO00O00OO000O =0 #line:424
    for OO0OOOO000OO0OO00 in range (len (O00O00OO0OO000OOO )):#line:425
        if OOOOOO00O00OO000O <len (O00O00OO0OO000OOO [OO0OOOO000OO0OO00 ]):#line:426
            OOOOOO00O00OO000O =len (O00O00OO0OO000OOO [OO0OOOO000OO0OO00 ])#line:427
    print ("SKUf")#line:428
    print (OO00O0000O0OO0000 .iloc [:,2 ])#line:429
    for OO0O0000OO0O0O0OO in range (OOOOOO00O00OO000O ):#line:433
            OO00O0000O0OO0000 .iloc [:,25 +OO0O0000OO0O0O0OO ]=''#line:434
    O00OO0OOOOO0O000O =0 #line:436
    for O0OO0OOOOO0O0O000 in O00OOO00O0OOOOOOO :#line:437
        for OO0O0000OO0O0O0OO in range (len (O00O00OO0OO000OOO [O00OO0OOOOO0O000O ])):#line:438
            if O00O00OO0OO000OOO [O00OO0OOOOO0O000O ][OO0O0000OO0O0O0OO ]!='nan':#line:441
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]=O00O00OO0OO000OOO [O00OO0OOOOO0O000O ][OO0O0000OO0O0O0OO ]#line:442
                OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [25 +OO0O0000OO0O0O0OO ]:'Image'+str (OO0O0000OO0O0O0OO +1 )},inplace =True )#line:443
        O00OO0OOOOO0O000O =O00OO0OOOOO0O000O +1 #line:445
    print ("SKUf")#line:446
    print (OO00O0000O0OO0000 .iloc [:,2 ])#line:447
    OO0OOO000OO0O0O0O =[None ]*OOOOOO00O00OO000O #line:449
    OOOOO00O0OOOOOOOO =[None ]*OOOOOO00O00OO000O #line:450
    O0O0O0000O0OO0OOO =[None ]*OOOOOO00O00OO000O #line:451
    O000O0O0OO00OOO00 =[None ]*OOOOOO00O00OO000O #line:452
    O0O0000O00O000OO0 =[None ]*OOOOOO00O00OO000O #line:453
    O0000O0O000O0OO00 =[None ]*OOOOOO00O00OO000O #line:454
    for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .iterrows ():#line:455
        if pd .notna (OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]):#line:458
            for OO0O0000OO0O0O0OO in range (0 ,OOOOOO00O00OO000O ):#line:459
                OO0OOO000OO0O0O0O [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]))#line:460
                OOOOO00O0OOOOOOOO [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]))#line:466
                O0O0O0000O0OO0OOO [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,10 ]))#line:467
                O000O0O0OO00OOO00 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]))#line:468
                O0O0000O00O000OO0 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,31 ]))#line:469
                O0000O0O000O0OO00 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,32 ]))#line:470
        else :#line:472
            for OO0O0000OO0O0O0OO in range (0 ,OOOOOO00O00OO000O ):#line:473
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]=OO0OOO000OO0O0O0O [OO0O0000OO0O0O0OO ]#line:474
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]=OOOOO00O0OOOOOOOO [OO0O0000OO0O0O0OO ]#line:480
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,10 ]=O0O0O0000O0OO0OOO [OO0O0000OO0O0O0OO ]#line:481
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]=O000O0O0OO00OOO00 [OO0O0000OO0O0O0OO ]#line:482
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,31 ]=O0O0000O00O000OO0 [OO0O0000OO0O0O0OO ]#line:483
                OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,32 ]=O0000O0O000O0OO00 [OO0O0000OO0O0O0OO ]#line:484
    print ("SKUf")#line:488
    print (OO00O0000O0OO0000 .iloc [:,2 ])#line:489
    return OO00O0000O0OO0000 #line:498
def convert_df (OO00OO0O00O00OOOO ):#line:501
   return OO00OO0O00O00OOOO .to_csv (index =False ).encode ('utf_8_sig')#line:502
if uploaded_file and uploaded_file2 :#line:504
    df3 =ConvertCitrus (df ,df2 )#line:505
    csv =convert_df (df3 )#line:509
    st .download_button ("Press to Download",csv ,"file.csv","text/csv",key ='download-csv')