JPLTedCas commited on
Commit
bedcf36
·
1 Parent(s): df4bfa1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +211 -517
app.py CHANGED
@@ -1,517 +1,211 @@
1
- import streamlit as st
2
- import pandas as pd
3
-
4
- uploaded_file = st.file_uploader("Choose product file", type="csv")
5
-
6
- if uploaded_file:
7
- #df = pd.read_excel(uploaded_file)
8
- df = pd.read_csv(uploaded_file, encoding='utf8')
9
- #st.dataframe(df)
10
-
11
- uploaded_file2 = st.file_uploader("Choose inventory file", type="csv")
12
-
13
- if uploaded_file2:
14
- #df2 = pd.read_excel(uploaded_file2)
15
- df2 = pd.read_csv(uploaded_file2, encoding='utf8')
16
-
17
- #st.dataframe(df2)
18
-
19
- #st.table(df2)
20
-
21
- def ConvertCitrus(df,df2):
22
- # Load pandas
23
- #import re as re
24
- import RemoveHTMLtags as RHT
25
- #INPUT FILE
26
-
27
-
28
-
29
- #df.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1.xlsx',index=False)
30
- #df2.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/inventory_export_1.xlsx',index=False)
31
-
32
- tagsp=str('<style type=')+str('"')+str('"')+str('text/css')+str('"')+str('"')+str('><!--')
33
- tags_list = ['<p class=','"p1"', 'data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>' ,'</p>' , '<p*>',
34
- '<ul>','</ul>',
35
- '</i>','</b>','</p>','</br>',
36
- '<li>','</li>',
37
- '<br>',
38
- '<strong>','</strong>',
39
- '<span*>','</span>', '"utf-8"','UTF-8',
40
- '<a href*>','</a>','<meta charset=utf-8>',';;',
41
- '<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']
42
-
43
-
44
-
45
-
46
- #def remove_html_tags(text):
47
- # """Remove html tags from a string"""
48
- # import re
49
- # clean = re.compile('<.*?>')
50
- # return re.sub(clean, '', text)
51
- #for tag in tags_list:
52
- ## df['overview_copy'] = df['overview_copy'].str.replace(tag, '')
53
- # df.replace(to_replace=tag, value='', regex=True, inplace=True)
54
-
55
- for index, row in df.iterrows():
56
- df.iloc[index,2]=RHT.remove_tags(str(df.iloc[index,2]))
57
-
58
- print(df.iloc[:,2])
59
-
60
- #df.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/products_export_1-nohtml.xlsx')
61
-
62
- #df.fillna('', inplace=True)
63
- df.iloc[:,2] = pd.Series(df.iloc[:,2],dtype="string")
64
- print(df.iloc[:,2].dtype)
65
- #s = pd.Series(['a', 'b', 'c'], dtype="string")
66
- #s.dtype
67
-
68
- #CONVERT FORMATS
69
-
70
- #Column A(0) Ignore
71
- #Column B(1) “Title” > Column B(1) Product Name
72
- #Column C(2) Ignore
73
- #Column D(3) “Vendor” > Column K(10) “Brand”
74
- #Column F(5) “Custom Product Type” > Column AF(31) “Short Description”
75
- #Column J(9) “Option1 Value” > Column I(8) “Size 1”
76
- #Column L(11) “Option2 Value” > Column H(7) > Colour
77
- #Column M(12) - Ignore
78
- #Column N(13) “Option 3 Value” > Column A(0) “Style Number”
79
- #1. Problems in Column N. Some codes do not stay as a number when the Citrus Lime csv is re-opened (8.05652E+12 instead of 8056516179091) The saved csv keeps turning this column back to “general’ format column when I re-open it, even after I save it as number column. The upload must keep this as a number formatted column.
80
-
81
- #Column O(14) - Ignore
82
- #Column P(15) “Variant Grams” > Column AE (30) “Weight (grams)
83
- #Column R(17) “Variant Inventory Qty” > Column R (17) “Stock Count”. THIS IS THE KEY TO THE DAILY UPLOAD
84
- #Column U(20) “Variant Price” > Column F (5) “Unit MSRP”
85
-
86
- #Column Y > C&D
87
- #################################################################################################
88
- temp_cols=df.columns.tolist()
89
- new_cols=temp_cols.copy()
90
- new_cols[1]=temp_cols[1]
91
-
92
- new_cols[17]=temp_cols[17]
93
-
94
- #################################################################################################
95
- #THERE IS NO EXISTING COLUMN ON THE SHOPIFY EXPORT TO DIRECTLY PROVIDE DATA FOR COLUMN E ON THE CITRUS LIME CSV (which is the wholesale price ex VAT to the retailer). However – Column U “ Variant Price” can provide the information for Column E with the following formula:
96
-
97
- #((Column U/1.2)/1.6)*0.96
98
-
99
- #Column Y “Variant Barcode” > Column C “Vendor SKU” (2) (and D "UPC/EAN" (3)??)
100
-
101
- #There are 2 problems with converting Column Y to Column C.
102
- #2. Shopify exports the UPC data and adds an apostrophe. This fails the SIM process. We need to get data without the apostrophe.
103
- #3. Vendor SKU. The CSV file keeps switching the data to a non-number eg 8056516178308 shows as 8.05652E+12. The saved csv keeps turning this column to “general’ format column when I re-open it, even after I save it as number column. The upload must keep this as a number formatted column.
104
-
105
- #This is where it gets complicated…
106
-
107
- #Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”). Column AA in the Shopify export csv just shows the image position instead. We need to find a solution. We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images, these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4” etc.
108
- #new_cols[4]=((temp_cols[20]/1.2)/1.96)*0.96
109
-
110
- #Column C “Body (HTML)” > Column AG “Long Description” (32)
111
-
112
-
113
- df_copy=df[new_cols].copy(deep=True)
114
- print("SKU")
115
- print(df.iloc[:,24])
116
-
117
- local_df = df.copy(deep=True)
118
-
119
- df_copy.iloc[:,0]=local_df.iloc[:,13].copy(deep=True)
120
- df_copy.iloc[:,5]=local_df.iloc[:,20].copy(deep=True)
121
- df_copy.iloc[:,7]=local_df.iloc[:,11].copy(deep=True)
122
- #24 is variant Bar code
123
- df_copy.iloc[:,2]=local_df.iloc[:,24].copy(deep=True)
124
-
125
- df_copy.iloc[:,8]=local_df.iloc[:,9].copy(deep=True)
126
- df_copy.iloc[:,10]=local_df.iloc[:,3].copy(deep=True)
127
- df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
128
- df_copy.columns.values[10] = 'Brand'
129
-
130
- df_copy.iloc[:,30]=local_df.iloc[:,15].copy(deep=True)
131
- df_copy.iloc[:,31]=local_df.iloc[:,5].copy(deep=True)
132
- df_copy.iloc[:,32]=local_df.iloc[:,2].copy(deep=True)
133
-
134
- df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)
135
-
136
- print(list(df_copy.columns.values))
137
-
138
- #WE CONVERT COLUMN 20 to numeric (in case it's read as string)
139
- df_copy.iloc[:,20] = df_copy.iloc[:,20].astype(float)
140
-
141
- df_copy.iloc[:,4]=(((df_copy.iloc[:,20]/1.2)/1.96)*0.96)
142
- from babel.numbers import format_currency
143
- df_copy.iloc[:,4] = df_copy.iloc[:,4].apply(lambda x: format_currency(x, currency="GBP", locale="en_GB"))
144
- df_copy.iloc[:,5] = df_copy.iloc[:,5].apply(lambda x: format_currency(x, currency="GBP", locale="en_GB"))
145
-
146
- print(((df_copy.iloc[:,20]/1.2)/1.96)*0.96)
147
- #df_copy.iloc[:,2]=df_copy.iloc[:,2].str.replace("'","")
148
- df_copy.iloc[:,2] = df_copy.iloc[:,2].astype(str).str.replace("'","")
149
-
150
-
151
- #df_copy.iloc[:,24]=df_copy.iloc[:,24].str.replace("'","")
152
- df_copy.iloc[:,24] = df_copy.iloc[:,24].astype(str).str.replace("'","")
153
-
154
- print("SKU")
155
- print(df_copy.iloc[:,2])
156
-
157
-
158
-
159
-
160
-
161
-
162
- #rename specific column names
163
-
164
- #df_copy.rename(columns = {'Variant Inventory Qty':'Stock Count','Variant Grams' : 'Weight (grams)'}, inplace = True)
165
-
166
- #df_copy.rename(columns = {'Option2 Value':'Colour','Option1 Value' : 'Size 1'}, inplace = True)
167
-
168
- #df_copy.rename(columns = {'Vendor':'Brand','Title' : 'Product Name'}, inplace = True)
169
- #df_copy.rename(columns = {'Body (HTML)':'Long Description'}, inplace = True)
170
-
171
- #df_copy.rename(columns={df_copy.columns[4]: 'Unit Cost'},inplace=True)
172
-
173
-
174
- print(list(df_copy.columns.values))
175
-
176
-
177
- #df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
178
- #df_copy.rename(columns={df_copy.columns[2]: 'Vendor SKU'},inplace=True)
179
- df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
180
- ##IN COLUMN H (6), WE HAVE SOME TAGS AND WE WANT TO GET THE TAG "MEN, WOMEN, LADY OR BOTH (UNISEX)"
181
- #WE ARE GETTING THAT INFO BEFORE REMOVING DATA FROM 6
182
- for index, row in df_copy.iterrows():
183
- if index==0:
184
- print(row['Colour Code (Simple Colour)'])
185
- if " mens" in str(row['Colour Code (Simple Colour)']):
186
- if " womens" in str(row['Colour Code (Simple Colour)']):
187
- df_copy.iloc[index,12]="Unisex"
188
- else:
189
- df_copy.iloc[index,12]="Mens"
190
-
191
- if " womens" in str(row['Colour Code (Simple Colour)']):
192
- if " mens" in str(row['Colour Code (Simple Colour)']):
193
- df_copy.iloc[index,12]="Unisex"
194
- else:
195
- df_copy.iloc[index,12]="Womens"
196
- if " ladys" in str(row['Colour Code (Simple Colour)']):
197
- df_copy.iloc[index,12]="Ladys"
198
- if index==0:
199
- print(row[12])
200
- print(df_copy.iloc[:,12])
201
-
202
-
203
-
204
- df_copy.iloc[:,6] = ""
205
- #Style Number Product Name Vendor SKU UPC/EAN Unit Cost Unit MSRP Colour Code (Simple Colour) Colour
206
- df_copy.rename(columns={df_copy.columns[0]: 'Style Number'},inplace=True)
207
- df_copy.rename(columns={df_copy.columns[1]: 'Product Name'},inplace=True)
208
- df_copy.rename(columns={df_copy.columns[2]: 'Vendor SKU'},inplace=True)
209
- df_copy.rename(columns={df_copy.columns[3]: 'UPC/EAN'},inplace=True)
210
- df_copy.rename(columns={df_copy.columns[4]: 'Unit Cost'},inplace=True)
211
- df_copy.rename(columns={df_copy.columns[5]: 'Unit MSRP'},inplace=True)
212
- df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
213
- print(df_copy.columns[6])
214
- df_copy.rename(columns={df_copy.columns[7]: 'Colour'},inplace=True)
215
- #Size 1 Size 2 Brand Year or Season Gender Manufacturer Part Code Other Barcode VAT Pack Qty
216
- df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)
217
- df_copy.rename(columns={df_copy.columns[9]: 'Size 2'},inplace=True)
218
- df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
219
- df_copy.rename(columns={df_copy.columns[11]: 'Year of Season'},inplace=True)
220
- df_copy.rename(columns={df_copy.columns[12]: 'Gender'},inplace=True)
221
- df_copy.rename(columns={df_copy.columns[13]: 'Manufacturer Part Code'},inplace=True)
222
- df_copy.rename(columns={df_copy.columns[14]: 'Other Bar Code'},inplace=True)
223
- df_copy.rename(columns={df_copy.columns[15]: 'VAT'},inplace=True)
224
- df_copy.rename(columns={df_copy.columns[16]: 'Pack Qty'},inplace=True)
225
- #Stock Count Price Band 1 Price Band 2 IE VAT Unit Cost in Euros MSRP in Euros
226
- df_copy.rename(columns={df_copy.columns[17]: 'Stock Count'},inplace=True)
227
- df_copy.rename(columns={df_copy.columns[18]: 'Price Band 1'},inplace=True)
228
- df_copy.rename(columns={df_copy.columns[19]: 'Price Band 2'},inplace=True)
229
- df_copy.rename(columns={df_copy.columns[20]: 'IE VAT'},inplace=True)
230
- df_copy.rename(columns={df_copy.columns[21]: 'Unit Cost in Euros'},inplace=True)
231
- df_copy.rename(columns={df_copy.columns[22]: 'MSRP in Euros'},inplace=True)
232
- #Commodity Codes Country of Origin Image (multiple images can be added in separate columns if available)
233
- df_copy.rename(columns={df_copy.columns[23]: 'Commodity Codes'},inplace=True)
234
- df_copy.rename(columns={df_copy.columns[24]: 'Country of Origin'},inplace=True)
235
- #Weight Short Description Long Description Video Link
236
- df_copy.rename(columns={df_copy.columns[30]: 'Weight'},inplace=True)
237
- df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
238
- df_copy.rename(columns={df_copy.columns[32]: 'Long Description'},inplace=True)
239
- df_copy.rename(columns={df_copy.columns[33]: 'Video Link'},inplace=True)
240
-
241
-
242
-
243
-
244
-
245
-
246
-
247
- df_copy.iloc[:,9] = ""
248
-
249
- df_copy.iloc[:,13] = ""
250
-
251
- df_copy.iloc[:,14] = ""
252
-
253
- df_copy.iloc[:,16] = ""
254
-
255
- df_copy.iloc[:,18] = ""
256
-
257
- df_copy.iloc[:,19] = ""
258
-
259
- df_copy.iloc[:,20] = ""
260
-
261
- df_copy.iloc[:,21] = ""
262
-
263
- df_copy.iloc[:,22] = ""
264
- #df_copy.rename(columns={df_copy.columns[26]: 'Weight (Grams)'},inplace=True)
265
-
266
- #df_copy.iloc[:,26] = ""
267
-
268
- df_copy.iloc[:,33] = ""
269
-
270
-
271
-
272
- #df_copy.iloc[:,5] = " "
273
- df_copy.iloc[:,15] = "20"
274
-
275
- print(list(df_copy.columns.values))
276
-
277
- #Column Y in the export and this code should go into both Columns C and D in the conversion with the titles “Vendor SKU” and “UPC/EAN” It is replicated for a complicated reason that I won’t explain here, but Column Y in the export should go into both Column C and D in the conversion
278
- df_copy.iloc[:,3] = df_copy.iloc[:,2]
279
- df_copy.columns.values[10] = 'Brand'
280
- df_copy.iloc[:,11] = ""
281
- df_copy.iloc[:,22] = ""
282
- #df_copy.rename(columns={df_copy.columns[30]: 'Weight (Grams)'},inplace=True)
283
-
284
-
285
- print("SKU")
286
- print(df_copy.iloc[:,2])
287
-
288
-
289
- #DATA COMING FROM THE OTHER CSV FILE
290
-
291
- df_copy.iloc[:,23] = ""
292
-
293
-
294
- df_copy.iloc[:,24] = ""
295
-
296
- #WARNING: HEADER IS IN SECOND ROW. WE DONT HAVE INTO ACCOUNT FIRST ROW
297
- #df2 = pd.read_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/inventory_export_12.xlsx',engine="openpyxl", header=1)
298
-
299
-
300
- #WE HAVE TO REORDER COLUMNS COO and HS Code in df2 in order to match the index order of df
301
- #list1=df_copy.set_index('Vendor SKU').T.to_dict('list')
302
- #print(list1)
303
- new_index=df['Variant SKU']
304
- boolean = df['Variant SKU'].duplicated().any()
305
- #print(boolean)
306
- boolean = df2['SKU'].duplicated().any()
307
- #print(boolean)
308
- duplicateRows2 = df2[df2.duplicated(['SKU'],keep = False)]
309
- #print(duplicateRows2['SKU'])
310
-
311
- duplicateRows = df[df.duplicated(['Variant SKU'],keep = False)]
312
- #print(duplicateRows)
313
- #print(duplicateRows['Variant SKU'])
314
- #print(new_index)
315
- df2=df2.set_index('SKU')
316
- #print(df2)
317
- #i=df2.index
318
- #for x in i:
319
- # print(x)
320
- df2.reindex(new_index)
321
- #i=df2.index
322
- #for x in i:
323
- # print(x)
324
- #print(df2)
325
- #print(df2.index)
326
- #df3 = pd.DataFrame(students, index=['a', 'b', 'c', 'd', 'e'])
327
- #print("Original DataFrame: ")
328
- #print(df)
329
-
330
-
331
-
332
-
333
-
334
-
335
-
336
-
337
- print("TERMINE")
338
-
339
- df_copy.iloc[:,24] = df2.loc[:,'COO']
340
- df_copy.iloc[:,23] = df2.loc[:,'HS Code']
341
-
342
- df_copy['Commodity Codes']=df2['HS Code'].values
343
- df_copy['Country of Origin']=df2['COO'].values
344
-
345
-
346
- #print(df2.loc[:,'COO'])
347
- #print(df2.loc[:,'HS Code'])
348
- #print(df_copy.iloc[:,24])
349
- #print(df_copy.iloc[:,23])
350
- print("SKU")
351
- print(df_copy.iloc[:,2])
352
-
353
-
354
-
355
- #WE COMPLETE THE DATAFRMAE WITH DUMMY COLUMNS TILL THE MAXIMUM DESIRED NUMBER
356
- header_list=[]
357
- for i in range(49,58):
358
- #df.insert(i, "Dummy", [], True)
359
- header_list.append(str(i))
360
- df_copy[str(i)]=''
361
-
362
-
363
-
364
- column_indices=[]
365
- for i in range(0,24):
366
- column_indices.append(34+i)
367
-
368
- #Tech Specs Size Chart Geometry Chart Frame Rear Shock Fork
369
- #Headset Stem Handlebar Bar Tape / Grip Brakes Levers Brake Calipers Tyres Wheels Front Derailleur
370
- #Rear Derailleur Shift Levers Chain Cassette Chainset Bottom Bracket Pedals Saddle Seatpost
371
-
372
- old_names = df_copy.columns[column_indices]
373
- new_names = ['Tech Specs','Size Chart','Geometry Chart','Frame', 'Rear Shock', 'Fork', 'Headset', 'Stem', 'Handlebar', 'Bar Tape / Grip', 'Brakes Levers', 'Brake Calipers', 'Tyres', 'Wheels', 'Front Derailleur', 'Rear Derailleur', 'Shift Levers' ,'Chain' ,'Cassette' ,'Chainset' ,'Bottom Bracket', 'Pedals', 'Saddle', 'Seatpost']
374
- old_names = df_copy.columns[column_indices]
375
- df_copy.rename(columns=dict(zip(old_names, new_names)), inplace=True)
376
-
377
-
378
- df_copy.iloc[:,34:58]=''
379
-
380
-
381
- print("SKUf")
382
- print(df_copy.iloc[:,2])
383
- #print(df_copy.iloc[:,3])
384
-
385
- ## Rename all columns with list
386
- #cols = ['Courses','Courses_Fee','Courses_Duration']
387
- #df_copy.columns = cols
388
- #print(df.columns)
389
-
390
-
391
- ###################
392
- #PUT IMAGES IN A SIGNLE ROW: WE LOOK FOR IMAGES COMING FROM COMMON NAMES
393
- #Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated
394
- #and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”).
395
- #Column AA in the Shopify export csv just shows the image position instead. We need to find a solution.
396
- #We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images,
397
- #these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4”
398
- #etc
399
- ####################
400
- #region imagesRow2Column
401
- #We get the list of rows with NAN data in Product Name column (same product name but different sizes (XS, XL...). Each of these rows has a image scr link
402
- list_col=df_copy.loc[pd.isna(df_copy.loc[:,'Product Name']), :].index
403
- images=df_copy.loc[list_col,'Image Src']
404
- list_end=[]
405
- for row in df_copy.index:
406
- #NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
407
- if pd.notna(df_copy.loc[row,'Product Name']):
408
- #print(df_copy.loc[row,'Product Name'])
409
- rowNotNa=row
410
- i=1
411
- #j=1
412
- list_img=[]
413
- #WE INCLUDE IN THE LIST THE FIRST IMAGE
414
- list_img.append(df_copy.loc[row,'Image Src'])
415
- while pd.isna(df_copy.loc[row+i,'Product Name']) and row+i<len(df_copy.index)-1:
416
- #WE ADD THE REST OF THE IMAGES (FOLLOWING ROWS)
417
- if "http" in str(df_copy.loc[row+i,'Image Src']):
418
- list_img.append(df_copy.loc[row+i,'Image Src'])
419
- i=i+1
420
- list_end.append(list_img)
421
-
422
- #IN list_end WE HAVE ALL OF THE IMAGES FOR EACH PRODUCT NAME
423
- index_nonnan=df_copy.loc[pd.notna(df_copy.loc[:,'Product Name']), :].index
424
- max=0
425
- for i in range(len(list_end)):
426
- if max<len(list_end[i]):
427
- max=len(list_end[i])
428
- print("SKUf")
429
- print(df_copy.iloc[:,2])
430
-
431
- #WE CHANGE THE COLUMN NAME OF THE COLUMNS WHERE THERE ARE IMAGES: EACH COLUMN IS CALLED "Image x"
432
- #We first delete old values in the Image columns
433
- for j in range(max):
434
- df_copy.iloc[:,25+j]=''
435
-
436
- counter=0
437
- for index in index_nonnan:
438
- for j in range(len(list_end[counter])):
439
-
440
-
441
- if list_end[counter][j]!='nan':
442
- df_copy.iloc[index,25+j]=list_end[counter][j]
443
- df_copy.rename(columns={df_copy.columns[25+j]: 'Image'+str(j+1)},inplace=True)
444
-
445
- counter=counter+1
446
- print("SKUf")
447
- print(df_copy.iloc[:,2])
448
- #WE HAVE TO FILL NAN ROWS (SAME PRODUCT BUT DIFFERENT SIZES) WITH THE SAME IMAGES THAT IN NON NAN ROWS (MAIN PRODUCT-SIZE)
449
- listImages=[None] * max
450
- list1=[None] * max
451
- list2=[None] * max
452
- list3=[None] * max
453
- list4=[None] * max
454
- list5=[None] * max
455
- for index, row in df_copy.iterrows():
456
- #NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
457
- #print(df_copy.iloc[index,1])
458
- if pd.notna(df_copy.iloc[index,1]):
459
- for j in range(0,max):
460
- listImages[j]=str((df_copy.iloc[index,25+j]))
461
- #list1[j]=str((df_copy.iloc[index,1+j]))
462
- #list2[j]=str((df_copy.iloc[index,10+j]))
463
- #list3[j]=str((df_copy.iloc[index,12+j]))
464
- #list4[j]=str((df_copy.iloc[index,31+j]))
465
- #list5[j]=str((df_copy.iloc[index,32+j]))
466
- list1[j]=str((df_copy.iloc[index,1]))
467
- list2[j]=str((df_copy.iloc[index,10]))
468
- list3[j]=str((df_copy.iloc[index,12]))
469
- list4[j]=str((df_copy.iloc[index,31]))
470
- list5[j]=str((df_copy.iloc[index,32]))
471
-
472
- else:
473
- for j in range(0,max):
474
- df_copy.iloc[index,25+j]=listImages[j]
475
- #df_copy.iloc[index,1+j]=list1[j]
476
- #df_copy.iloc[index,10+j]=list2[j]
477
- #df_copy.iloc[index,12+j]=list3[j]
478
- #df_copy.iloc[index,31+j]=list4[j]
479
- #df_copy.iloc[index,32+j]=list5[j]
480
- df_copy.iloc[index,1]=list1[j]
481
- df_copy.iloc[index,10]=list2[j]
482
- df_copy.iloc[index,12]=list3[j]
483
- df_copy.iloc[index,31]=list4[j]
484
- df_copy.iloc[index,32]=list5[j]
485
-
486
- #endregion
487
-
488
- print("SKUf")
489
- print(df_copy.iloc[:,2])
490
- #print(df_copy.iloc[:,3])
491
-
492
- ###################################################################################
493
- #df_copy.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.xlsx',index=False)
494
-
495
-
496
-
497
- #df_copy.to_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.csv',index=False, encoding='utf_8_sig')
498
- return df_copy
499
-
500
-
501
- def convert_df(df):
502
- return df.to_csv(index=False).encode('utf_8_sig')
503
-
504
- if uploaded_file and uploaded_file2:
505
- df3=ConvertCitrus(df,df2)
506
-
507
-
508
-
509
- csv = convert_df(df3)
510
-
511
- st.download_button(
512
- "Press to Download",
513
- csv,
514
- "file.csv",
515
- "text/csv",
516
- key='download-csv'
517
- )
 
1
+ import streamlit as st #line:1
2
+ import pandas as pd #line:2
3
+ uploaded_file =st .file_uploader ("Choose product file",type ="csv")#line:4
4
+ if uploaded_file :#line:6
5
+ df =pd .read_csv (uploaded_file ,encoding ='utf8')#line:8
6
+ uploaded_file2 =st .file_uploader ("Choose inventory file",type ="csv")#line:11
7
+ if uploaded_file2 :#line:13
8
+ df2 =pd .read_csv (uploaded_file2 ,encoding ='utf8')#line:15
9
+ def ConvertCitrus (O00O000OOOO0O00O0 ,OOO0O0O0OOO0O00O0 ):#line:21
10
+ import RemoveHTMLtags as RHT #line:24
11
+ O0OOOOOO00O000OO0 =str ('<style type=')+str ('"')+str ('"')+str ('text/css')+str ('"')+str ('"')+str ('><!--')#line:32
12
+ OOOO00O00000O00O0 =['<p class=','"p1"','data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>','</p>','<p*>','<ul>','</ul>','</i>','</b>','</p>','</br>','<li>','</li>','<br>','<strong>','</strong>','<span*>','</span>','"utf-8"','UTF-8','<a href*>','</a>','<meta charset=utf-8>',';;','<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']#line:41
13
+ for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in O00O000OOOO0O00O0 .iterrows ():#line:55
14
+ O00O000OOOO0O00O0 .iloc [O0OO0OOOOO0O0O000 ,2 ]=RHT .remove_tags (str (O00O000OOOO0O00O0 .iloc [O0OO0OOOOO0O0O000 ,2 ]))#line:56
15
+ print (O00O000OOOO0O00O0 .iloc [:,2 ])#line:58
16
+ O00O000OOOO0O00O0 .iloc [:,2 ]=pd .Series (O00O000OOOO0O00O0 .iloc [:,2 ],dtype ="string")#line:63
17
+ print (O00O000OOOO0O00O0 .iloc [:,2 ].dtype )#line:64
18
+ O0000OOOOO000000O =O00O000OOOO0O00O0 .columns .tolist ()#line:88
19
+ O0000OO0OOO0OOO0O =O0000OOOOO000000O .copy ()#line:89
20
+ O0000OO0OOO0OOO0O [1 ]=O0000OOOOO000000O [1 ]#line:90
21
+ O0000OO0OOO0OOO0O [17 ]=O0000OOOOO000000O [17 ]#line:92
22
+ OO00O0000O0OO0000 =O00O000OOOO0O00O0 [O0000OO0OOO0OOO0O ].copy (deep =True )#line:113
23
+ print ("SKU")#line:114
24
+ print (O00O000OOOO0O00O0 .iloc [:,24 ])#line:115
25
+ OO0OO000O0OO0000O =O00O000OOOO0O00O0 .copy (deep =True )#line:117
26
+ OO00O0000O0OO0000 .iloc [:,0 ]=OO0OO000O0OO0000O .iloc [:,13 ].copy (deep =True )#line:119
27
+ OO00O0000O0OO0000 .iloc [:,5 ]=OO0OO000O0OO0000O .iloc [:,20 ].copy (deep =True )#line:120
28
+ OO00O0000O0OO0000 .iloc [:,7 ]=OO0OO000O0OO0000O .iloc [:,11 ].copy (deep =True )#line:121
29
+ OO00O0000O0OO0000 .iloc [:,2 ]=OO0OO000O0OO0000O .iloc [:,24 ].copy (deep =True )#line:123
30
+ OO00O0000O0OO0000 .iloc [:,8 ]=OO0OO000O0OO0000O .iloc [:,9 ].copy (deep =True )#line:125
31
+ OO00O0000O0OO0000 .iloc [:,10 ]=OO0OO000O0OO0000O .iloc [:,3 ].copy (deep =True )#line:126
32
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [10 ]:'Brand'},inplace =True )#line:127
33
+ OO00O0000O0OO0000 .columns .values [10 ]='Brand'#line:128
34
+ OO00O0000O0OO0000 .iloc [:,30 ]=OO0OO000O0OO0000O .iloc [:,15 ].copy (deep =True )#line:130
35
+ OO00O0000O0OO0000 .iloc [:,31 ]=OO0OO000O0OO0000O .iloc [:,5 ].copy (deep =True )#line:131
36
+ OO00O0000O0OO0000 .iloc [:,32 ]=OO0OO000O0OO0000O .iloc [:,2 ].copy (deep =True )#line:132
37
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [8 ]:'Size 1'},inplace =True )#line:134
38
+ print (list (OO00O0000O0OO0000 .columns .values ))#line:136
39
+ OO00O0000O0OO0000 .iloc [:,20 ]=OO00O0000O0OO0000 .iloc [:,20 ].astype (float )#line:139
40
+ OO00O0000O0OO0000 .iloc [:,4 ]=(((OO00O0000O0OO0000 .iloc [:,20 ]/1.2 )/1.96 )*0.96 )#line:141
41
+ from babel .numbers import format_currency #line:142
42
+ OO00O0000O0OO0000 .iloc [:,4 ]=OO00O0000O0OO0000 .iloc [:,4 ].apply (lambda O0OOO0O00OOO0OO0O :format_currency (O0OOO0O00OOO0OO0O ,currency ="GBP",locale ="en_GB"))#line:143
43
+ OO00O0000O0OO0000 .iloc [:,5 ]=OO00O0000O0OO0000 .iloc [:,5 ].apply (lambda O000O0OO000O0000O :format_currency (O000O0OO000O0000O ,currency ="GBP",locale ="en_GB"))#line:144
44
+ print (((OO00O0000O0OO0000 .iloc [:,20 ]/1.2 )/1.96 )*0.96 )#line:146
45
+ OO00O0000O0OO0000 .iloc [:,2 ]=OO00O0000O0OO0000 .iloc [:,2 ].astype (str ).str .replace ("'","")#line:148
46
+ OO00O0000O0OO0000 .iloc [:,24 ]=OO00O0000O0OO0000 .iloc [:,24 ].astype (str ).str .replace ("'","")#line:152
47
+ print ("SKU")#line:154
48
+ print (OO00O0000O0OO0000 .iloc [:,2 ])#line:155
49
+ print (list (OO00O0000O0OO0000 .columns .values ))#line:174
50
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:179
51
+ for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .iterrows ():#line:182
52
+ if O0OO0OOOOO0O0O000 ==0 :#line:183
53
+ print (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)'])#line:184
54
+ if " mens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:185
55
+ if " womens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:186
56
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Unisex"#line:187
57
+ else :#line:188
58
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Mens"#line:189
59
+ if " womens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:191
60
+ if " mens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:192
61
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Unisex"#line:193
62
+ else :#line:194
63
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Womens"#line:195
64
+ if " ladys"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:196
65
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Ladys"#line:197
66
+ if O0OO0OOOOO0O0O000 ==0 :#line:198
67
+ print (O0O0O00O00OO00OO0 [12 ])#line:199
68
+ print (OO00O0000O0OO0000 .iloc [:,12 ])#line:200
69
+ OO00O0000O0OO0000 .iloc [:,6 ]=""#line:204
70
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [0 ]:'Style Number'},inplace =True )#line:206
71
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [1 ]:'Product Name'},inplace =True )#line:207
72
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [2 ]:'Vendor SKU'},inplace =True )#line:208
73
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [3 ]:'UPC/EAN'},inplace =True )#line:209
74
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [4 ]:'Unit Cost'},inplace =True )#line:210
75
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [5 ]:'Unit MSRP'},inplace =True )#line:211
76
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:212
77
+ print (OO00O0000O0OO0000 .columns [6 ])#line:213
78
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [7 ]:'Colour'},inplace =True )#line:214
79
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [8 ]:'Size 1'},inplace =True )#line:216
80
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [9 ]:'Size 2'},inplace =True )#line:217
81
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [10 ]:'Brand'},inplace =True )#line:218
82
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [11 ]:'Year of Season'},inplace =True )#line:219
83
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [12 ]:'Gender'},inplace =True )#line:220
84
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [13 ]:'Manufacturer Part Code'},inplace =True )#line:221
85
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [14 ]:'Other Bar Code'},inplace =True )#line:222
86
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [15 ]:'VAT'},inplace =True )#line:223
87
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [16 ]:'Pack Qty'},inplace =True )#line:224
88
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [17 ]:'Stock Count'},inplace =True )#line:226
89
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [18 ]:'Price Band 1'},inplace =True )#line:227
90
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [19 ]:'Price Band 2'},inplace =True )#line:228
91
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [20 ]:'IE VAT'},inplace =True )#line:229
92
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [21 ]:'Unit Cost in Euros'},inplace =True )#line:230
93
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [22 ]:'MSRP in Euros'},inplace =True )#line:231
94
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [23 ]:'Commodity Codes'},inplace =True )#line:233
95
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [24 ]:'Country of Origin'},inplace =True )#line:234
96
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [30 ]:'Weight'},inplace =True )#line:236
97
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [31 ]:'Short Description'},inplace =True )#line:237
98
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [32 ]:'Long Description'},inplace =True )#line:238
99
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [33 ]:'Video Link'},inplace =True )#line:239
100
+ OO00O0000O0OO0000 .iloc [:,9 ]=""#line:247
101
+ OO00O0000O0OO0000 .iloc [:,13 ]=""#line:249
102
+ OO00O0000O0OO0000 .iloc [:,14 ]=""#line:251
103
+ OO00O0000O0OO0000 .iloc [:,16 ]=""#line:253
104
+ OO00O0000O0OO0000 .iloc [:,18 ]=""#line:255
105
+ OO00O0000O0OO0000 .iloc [:,19 ]=""#line:257
106
+ OO00O0000O0OO0000 .iloc [:,20 ]=""#line:259
107
+ OO00O0000O0OO0000 .iloc [:,21 ]=""#line:261
108
+ OO00O0000O0OO0000 .iloc [:,22 ]=""#line:263
109
+ OO00O0000O0OO0000 .iloc [:,33 ]=""#line:268
110
+ OO00O0000O0OO0000 .iloc [:,15 ]="20"#line:273
111
+ print (list (OO00O0000O0OO0000 .columns .values ))#line:275
112
+ OO00O0000O0OO0000 .iloc [:,3 ]=OO00O0000O0OO0000 .iloc [:,2 ]#line:278
113
+ OO00O0000O0OO0000 .columns .values [10 ]='Brand'#line:279
114
+ OO00O0000O0OO0000 .iloc [:,11 ]=""#line:280
115
+ OO00O0000O0OO0000 .iloc [:,22 ]=""#line:281
116
+ print ("SKU")#line:285
117
+ print (OO00O0000O0OO0000 .iloc [:,2 ])#line:286
118
+ OO00O0000O0OO0000 .iloc [:,23 ]=""#line:291
119
+ OO00O0000O0OO0000 .iloc [:,24 ]=""#line:294
120
+ OO0OOOO0O0OOO00O0 =O00O000OOOO0O00O0 ['Variant SKU']#line:303
121
+ OO0O00O00O00OO0O0 =O00O000OOOO0O00O0 ['Variant SKU'].duplicated ().any ()#line:304
122
+ OO0O00O00O00OO0O0 =OOO0O0O0OOO0O00O0 ['SKU'].duplicated ().any ()#line:306
123
+ O000OO000O0000O00 =OOO0O0O0OOO0O00O0 [OOO0O0O0OOO0O00O0 .duplicated (['SKU'],keep =False )]#line:308
124
+ OOOO0OO00O0O00000 =O00O000OOOO0O00O0 [O00O000OOOO0O00O0 .duplicated (['Variant SKU'],keep =False )]#line:311
125
+ OOO0O0O0OOO0O00O0 =OOO0O0O0OOO0O00O0 .set_index ('SKU')#line:315
126
+ OOO0O0O0OOO0O00O0 .reindex (OO0OOOO0O0OOO00O0 )#line:320
127
+ print ("TERMINE")#line:337
128
+ OO00O0000O0OO0000 .iloc [:,24 ]=OOO0O0O0OOO0O00O0 .loc [:,'COO']#line:339
129
+ OO00O0000O0OO0000 .iloc [:,23 ]=OOO0O0O0OOO0O00O0 .loc [:,'HS Code']#line:340
130
+ OO00O0000O0OO0000 ['Commodity Codes']=OOO0O0O0OOO0O00O0 ['HS Code'].values #line:342
131
+ OO00O0000O0OO0000 ['Country of Origin']=OOO0O0O0OOO0O00O0 ['COO'].values #line:343
132
+ print ("SKU")#line:350
133
+ print (OO00O0000O0OO0000 .iloc [:,2 ])#line:351
134
+ OO00O00OOOO0O00O0 =[]#line:356
135
+ for OO0OOOO000OO0OO00 in range (49 ,58 ):#line:357
136
+ OO00O00OOOO0O00O0 .append (str (OO0OOOO000OO0OO00 ))#line:359
137
+ OO00O0000O0OO0000 [str (OO0OOOO000OO0OO00 )]=''#line:360
138
+ O0000000OOOOO0O0O =[]#line:364
139
+ for OO0OOOO000OO0OO00 in range (0 ,24 ):#line:365
140
+ O0000000OOOOO0O0O .append (34 +OO0OOOO000OO0OO00 )#line:366
141
+ OOOO0OO0OO0OO0OOO =OO00O0000O0OO0000 .columns [O0000000OOOOO0O0O ]#line:372
142
+ O000000O00OOO000O =['Tech Specs','Size Chart','Geometry Chart','Frame','Rear Shock','Fork','Headset','Stem','Handlebar','Bar Tape / Grip','Brakes Levers','Brake Calipers','Tyres','Wheels','Front Derailleur','Rear Derailleur','Shift Levers','Chain','Cassette','Chainset','Bottom Bracket','Pedals','Saddle','Seatpost']#line:373
143
+ OOOO0OO0OO0OO0OOO =OO00O0000O0OO0000 .columns [O0000000OOOOO0O0O ]#line:374
144
+ OO00O0000O0OO0000 .rename (columns =dict (zip (OOOO0OO0OO0OO0OOO ,O000000O00OOO000O )),inplace =True )#line:375
145
+ OO00O0000O0OO0000 .iloc [:,34 :58 ]=''#line:378
146
+ print ("SKUf")#line:381
147
+ print (OO00O0000O0OO0000 .iloc [:,2 ])#line:382
148
+ O0O0OO000OO0OO000 =OO00O0000O0OO0000 .loc [pd .isna (OO00O0000O0OO0000 .loc [:,'Product Name']),:].index #line:402
149
+ O000O00000000O0O0 =OO00O0000O0OO0000 .loc [O0O0OO000OO0OO000 ,'Image Src']#line:403
150
+ O00O00OO0OO000OOO =[]#line:404
151
+ for O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .index :#line:405
152
+ if pd .notna (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 ,'Product Name']):#line:407
153
+ OO00O0OOOO000O0OO =O0O0O00O00OO00OO0 #line:409
154
+ OO0OOOO000OO0OO00 =1 #line:410
155
+ OO000OOOOO0OOOO0O =[]#line:412
156
+ OO000OOOOO0OOOO0O .append (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 ,'Image Src'])#line:414
157
+ while pd .isna (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Product Name'])and O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 <len (OO00O0000O0OO0000 .index )-1 :#line:415
158
+ if "http"in str (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Image Src']):#line:417
159
+ OO000OOOOO0OOOO0O .append (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Image Src'])#line:418
160
+ OO0OOOO000OO0OO00 =OO0OOOO000OO0OO00 +1 #line:419
161
+ O00O00OO0OO000OOO .append (OO000OOOOO0OOOO0O )#line:420
162
+ O00OOO00O0OOOOOOO =OO00O0000O0OO0000 .loc [pd .notna (OO00O0000O0OO0000 .loc [:,'Product Name']),:].index #line:423
163
+ OOOOOO00O00OO000O =0 #line:424
164
+ for OO0OOOO000OO0OO00 in range (len (O00O00OO0OO000OOO )):#line:425
165
+ if OOOOOO00O00OO000O <len (O00O00OO0OO000OOO [OO0OOOO000OO0OO00 ]):#line:426
166
+ OOOOOO00O00OO000O =len (O00O00OO0OO000OOO [OO0OOOO000OO0OO00 ])#line:427
167
+ print ("SKUf")#line:428
168
+ print (OO00O0000O0OO0000 .iloc [:,2 ])#line:429
169
+ for OO0O0000OO0O0O0OO in range (OOOOOO00O00OO000O ):#line:433
170
+ OO00O0000O0OO0000 .iloc [:,25 +OO0O0000OO0O0O0OO ]=''#line:434
171
+ O00OO0OOOOO0O000O =0 #line:436
172
+ for O0OO0OOOOO0O0O000 in O00OOO00O0OOOOOOO :#line:437
173
+ for OO0O0000OO0O0O0OO in range (len (O00O00OO0OO000OOO [O00OO0OOOOO0O000O ])):#line:438
174
+ if O00O00OO0OO000OOO [O00OO0OOOOO0O000O ][OO0O0000OO0O0O0OO ]!='nan':#line:441
175
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]=O00O00OO0OO000OOO [O00OO0OOOOO0O000O ][OO0O0000OO0O0O0OO ]#line:442
176
+ OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [25 +OO0O0000OO0O0O0OO ]:'Image'+str (OO0O0000OO0O0O0OO +1 )},inplace =True )#line:443
177
+ O00OO0OOOOO0O000O =O00OO0OOOOO0O000O +1 #line:445
178
+ print ("SKUf")#line:446
179
+ print (OO00O0000O0OO0000 .iloc [:,2 ])#line:447
180
+ OO0OOO000OO0O0O0O =[None ]*OOOOOO00O00OO000O #line:449
181
+ OOOOO00O0OOOOOOOO =[None ]*OOOOOO00O00OO000O #line:450
182
+ O0O0O0000O0OO0OOO =[None ]*OOOOOO00O00OO000O #line:451
183
+ O000O0O0OO00OOO00 =[None ]*OOOOOO00O00OO000O #line:452
184
+ O0O0000O00O000OO0 =[None ]*OOOOOO00O00OO000O #line:453
185
+ O0000O0O000O0OO00 =[None ]*OOOOOO00O00OO000O #line:454
186
+ for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .iterrows ():#line:455
187
+ if pd .notna (OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]):#line:458
188
+ for OO0O0000OO0O0O0OO in range (0 ,OOOOOO00O00OO000O ):#line:459
189
+ OO0OOO000OO0O0O0O [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]))#line:460
190
+ OOOOO00O0OOOOOOOO [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]))#line:466
191
+ O0O0O0000O0OO0OOO [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,10 ]))#line:467
192
+ O000O0O0OO00OOO00 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]))#line:468
193
+ O0O0000O00O000OO0 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,31 ]))#line:469
194
+ O0000O0O000O0OO00 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,32 ]))#line:470
195
+ else :#line:472
196
+ for OO0O0000OO0O0O0OO in range (0 ,OOOOOO00O00OO000O ):#line:473
197
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]=OO0OOO000OO0O0O0O [OO0O0000OO0O0O0OO ]#line:474
198
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]=OOOOO00O0OOOOOOOO [OO0O0000OO0O0O0OO ]#line:480
199
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,10 ]=O0O0O0000O0OO0OOO [OO0O0000OO0O0O0OO ]#line:481
200
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]=O000O0O0OO00OOO00 [OO0O0000OO0O0O0OO ]#line:482
201
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,31 ]=O0O0000O00O000OO0 [OO0O0000OO0O0O0OO ]#line:483
202
+ OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,32 ]=O0000O0O000O0OO00 [OO0O0000OO0O0O0OO ]#line:484
203
+ print ("SKUf")#line:488
204
+ print (OO00O0000O0OO0000 .iloc [:,2 ])#line:489
205
+ return OO00O0000O0OO0000 #line:498
206
+ def convert_df (OO00OO0O00O00OOOO ):#line:501
207
+ return OO00OO0O00O00OOOO .to_csv (index =False ).encode ('utf_8_sig')#line:502
208
+ if uploaded_file and uploaded_file2 :#line:504
209
+ df3 =ConvertCitrus (df ,df2 )#line:505
210
+ csv =convert_df (df3 )#line:509
211
+ st .download_button ("Press to Download",csv ,"file.csv","text/csv",key ='download-csv')