Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,517 +1,211 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
|
4 |
-
uploaded_file
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
#
|
24 |
-
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
#
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
print(
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
#
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
#
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
df_copy.rename(columns={df_copy.columns[6]: 'Colour Code (Simple Colour)'},inplace=True)
|
213 |
-
print(df_copy.columns[6])
|
214 |
-
df_copy.rename(columns={df_copy.columns[7]: 'Colour'},inplace=True)
|
215 |
-
#Size 1 Size 2 Brand Year or Season Gender Manufacturer Part Code Other Barcode VAT Pack Qty
|
216 |
-
df_copy.rename(columns={df_copy.columns[8]: 'Size 1'},inplace=True)
|
217 |
-
df_copy.rename(columns={df_copy.columns[9]: 'Size 2'},inplace=True)
|
218 |
-
df_copy.rename(columns={df_copy.columns[10]: 'Brand'},inplace=True)
|
219 |
-
df_copy.rename(columns={df_copy.columns[11]: 'Year of Season'},inplace=True)
|
220 |
-
df_copy.rename(columns={df_copy.columns[12]: 'Gender'},inplace=True)
|
221 |
-
df_copy.rename(columns={df_copy.columns[13]: 'Manufacturer Part Code'},inplace=True)
|
222 |
-
df_copy.rename(columns={df_copy.columns[14]: 'Other Bar Code'},inplace=True)
|
223 |
-
df_copy.rename(columns={df_copy.columns[15]: 'VAT'},inplace=True)
|
224 |
-
df_copy.rename(columns={df_copy.columns[16]: 'Pack Qty'},inplace=True)
|
225 |
-
#Stock Count Price Band 1 Price Band 2 IE VAT Unit Cost in Euros MSRP in Euros
|
226 |
-
df_copy.rename(columns={df_copy.columns[17]: 'Stock Count'},inplace=True)
|
227 |
-
df_copy.rename(columns={df_copy.columns[18]: 'Price Band 1'},inplace=True)
|
228 |
-
df_copy.rename(columns={df_copy.columns[19]: 'Price Band 2'},inplace=True)
|
229 |
-
df_copy.rename(columns={df_copy.columns[20]: 'IE VAT'},inplace=True)
|
230 |
-
df_copy.rename(columns={df_copy.columns[21]: 'Unit Cost in Euros'},inplace=True)
|
231 |
-
df_copy.rename(columns={df_copy.columns[22]: 'MSRP in Euros'},inplace=True)
|
232 |
-
#Commodity Codes Country of Origin Image (multiple images can be added in separate columns if available)
|
233 |
-
df_copy.rename(columns={df_copy.columns[23]: 'Commodity Codes'},inplace=True)
|
234 |
-
df_copy.rename(columns={df_copy.columns[24]: 'Country of Origin'},inplace=True)
|
235 |
-
#Weight Short Description Long Description Video Link
|
236 |
-
df_copy.rename(columns={df_copy.columns[30]: 'Weight'},inplace=True)
|
237 |
-
df_copy.rename(columns={df_copy.columns[31]: 'Short Description'},inplace=True)
|
238 |
-
df_copy.rename(columns={df_copy.columns[32]: 'Long Description'},inplace=True)
|
239 |
-
df_copy.rename(columns={df_copy.columns[33]: 'Video Link'},inplace=True)
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
df_copy.iloc[:,9] = ""
|
248 |
-
|
249 |
-
df_copy.iloc[:,13] = ""
|
250 |
-
|
251 |
-
df_copy.iloc[:,14] = ""
|
252 |
-
|
253 |
-
df_copy.iloc[:,16] = ""
|
254 |
-
|
255 |
-
df_copy.iloc[:,18] = ""
|
256 |
-
|
257 |
-
df_copy.iloc[:,19] = ""
|
258 |
-
|
259 |
-
df_copy.iloc[:,20] = ""
|
260 |
-
|
261 |
-
df_copy.iloc[:,21] = ""
|
262 |
-
|
263 |
-
df_copy.iloc[:,22] = ""
|
264 |
-
#df_copy.rename(columns={df_copy.columns[26]: 'Weight (Grams)'},inplace=True)
|
265 |
-
|
266 |
-
#df_copy.iloc[:,26] = ""
|
267 |
-
|
268 |
-
df_copy.iloc[:,33] = ""
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
#df_copy.iloc[:,5] = " "
|
273 |
-
df_copy.iloc[:,15] = "20"
|
274 |
-
|
275 |
-
print(list(df_copy.columns.values))
|
276 |
-
|
277 |
-
#Column Y in the export and this code should go into both Columns C and D in the conversion with the titles “Vendor SKU” and “UPC/EAN” It is replicated for a complicated reason that I won’t explain here, but Column Y in the export should go into both Column C and D in the conversion
|
278 |
-
df_copy.iloc[:,3] = df_copy.iloc[:,2]
|
279 |
-
df_copy.columns.values[10] = 'Brand'
|
280 |
-
df_copy.iloc[:,11] = ""
|
281 |
-
df_copy.iloc[:,22] = ""
|
282 |
-
#df_copy.rename(columns={df_copy.columns[30]: 'Weight (Grams)'},inplace=True)
|
283 |
-
|
284 |
-
|
285 |
-
print("SKU")
|
286 |
-
print(df_copy.iloc[:,2])
|
287 |
-
|
288 |
-
|
289 |
-
#DATA COMING FROM THE OTHER CSV FILE
|
290 |
-
|
291 |
-
df_copy.iloc[:,23] = ""
|
292 |
-
|
293 |
-
|
294 |
-
df_copy.iloc[:,24] = ""
|
295 |
-
|
296 |
-
#WARNING: HEADER IS IN SECOND ROW. WE DONT HAVE INTO ACCOUNT FIRST ROW
|
297 |
-
#df2 = pd.read_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/inventory_export_12.xlsx',engine="openpyxl", header=1)
|
298 |
-
|
299 |
-
|
300 |
-
#WE HAVE TO REORDER COLUMNS COO and HS Code in df2 in order to match the index order of df
|
301 |
-
#list1=df_copy.set_index('Vendor SKU').T.to_dict('list')
|
302 |
-
#print(list1)
|
303 |
-
new_index=df['Variant SKU']
|
304 |
-
boolean = df['Variant SKU'].duplicated().any()
|
305 |
-
#print(boolean)
|
306 |
-
boolean = df2['SKU'].duplicated().any()
|
307 |
-
#print(boolean)
|
308 |
-
duplicateRows2 = df2[df2.duplicated(['SKU'],keep = False)]
|
309 |
-
#print(duplicateRows2['SKU'])
|
310 |
-
|
311 |
-
duplicateRows = df[df.duplicated(['Variant SKU'],keep = False)]
|
312 |
-
#print(duplicateRows)
|
313 |
-
#print(duplicateRows['Variant SKU'])
|
314 |
-
#print(new_index)
|
315 |
-
df2=df2.set_index('SKU')
|
316 |
-
#print(df2)
|
317 |
-
#i=df2.index
|
318 |
-
#for x in i:
|
319 |
-
# print(x)
|
320 |
-
df2.reindex(new_index)
|
321 |
-
#i=df2.index
|
322 |
-
#for x in i:
|
323 |
-
# print(x)
|
324 |
-
#print(df2)
|
325 |
-
#print(df2.index)
|
326 |
-
#df3 = pd.DataFrame(students, index=['a', 'b', 'c', 'd', 'e'])
|
327 |
-
#print("Original DataFrame: ")
|
328 |
-
#print(df)
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
print("TERMINE")
|
338 |
-
|
339 |
-
df_copy.iloc[:,24] = df2.loc[:,'COO']
|
340 |
-
df_copy.iloc[:,23] = df2.loc[:,'HS Code']
|
341 |
-
|
342 |
-
df_copy['Commodity Codes']=df2['HS Code'].values
|
343 |
-
df_copy['Country of Origin']=df2['COO'].values
|
344 |
-
|
345 |
-
|
346 |
-
#print(df2.loc[:,'COO'])
|
347 |
-
#print(df2.loc[:,'HS Code'])
|
348 |
-
#print(df_copy.iloc[:,24])
|
349 |
-
#print(df_copy.iloc[:,23])
|
350 |
-
print("SKU")
|
351 |
-
print(df_copy.iloc[:,2])
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
#WE COMPLETE THE DATAFRMAE WITH DUMMY COLUMNS TILL THE MAXIMUM DESIRED NUMBER
|
356 |
-
header_list=[]
|
357 |
-
for i in range(49,58):
|
358 |
-
#df.insert(i, "Dummy", [], True)
|
359 |
-
header_list.append(str(i))
|
360 |
-
df_copy[str(i)]=''
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
column_indices=[]
|
365 |
-
for i in range(0,24):
|
366 |
-
column_indices.append(34+i)
|
367 |
-
|
368 |
-
#Tech Specs Size Chart Geometry Chart Frame Rear Shock Fork
|
369 |
-
#Headset Stem Handlebar Bar Tape / Grip Brakes Levers Brake Calipers Tyres Wheels Front Derailleur
|
370 |
-
#Rear Derailleur Shift Levers Chain Cassette Chainset Bottom Bracket Pedals Saddle Seatpost
|
371 |
-
|
372 |
-
old_names = df_copy.columns[column_indices]
|
373 |
-
new_names = ['Tech Specs','Size Chart','Geometry Chart','Frame', 'Rear Shock', 'Fork', 'Headset', 'Stem', 'Handlebar', 'Bar Tape / Grip', 'Brakes Levers', 'Brake Calipers', 'Tyres', 'Wheels', 'Front Derailleur', 'Rear Derailleur', 'Shift Levers' ,'Chain' ,'Cassette' ,'Chainset' ,'Bottom Bracket', 'Pedals', 'Saddle', 'Seatpost']
|
374 |
-
old_names = df_copy.columns[column_indices]
|
375 |
-
df_copy.rename(columns=dict(zip(old_names, new_names)), inplace=True)
|
376 |
-
|
377 |
-
|
378 |
-
df_copy.iloc[:,34:58]=''
|
379 |
-
|
380 |
-
|
381 |
-
print("SKUf")
|
382 |
-
print(df_copy.iloc[:,2])
|
383 |
-
#print(df_copy.iloc[:,3])
|
384 |
-
|
385 |
-
## Rename all columns with list
|
386 |
-
#cols = ['Courses','Courses_Fee','Courses_Duration']
|
387 |
-
#df_copy.columns = cols
|
388 |
-
#print(df.columns)
|
389 |
-
|
390 |
-
|
391 |
-
###################
|
392 |
-
#PUT IMAGES IN A SIGNLE ROW: WE LOOK FOR IMAGES COMING FROM COMMON NAMES
|
393 |
-
#Shopify exports the image file as https:// links in an odd way. Instead of attributing image 1, image 2, and image 3 etc in dedicated
|
394 |
-
#and separate columns, it spreads them across the sizes for the related product in the same column (Column Z “Image Src”).
|
395 |
-
#Column AA in the Shopify export csv just shows the image position instead. We need to find a solution.
|
396 |
-
#We need to be able to provide https// image links in separate columns for each product and size. For example, if a product has 3 images,
|
397 |
-
#these need to be converted into Citrus Lime CSV columns Column Z “Image 1”, Column AA “Image 2”, Column AB “Image 3”, Column AC “Image 4”
|
398 |
-
#etc
|
399 |
-
####################
|
400 |
-
#region imagesRow2Column
|
401 |
-
#We get the list of rows with NAN data in Product Name column (same product name but different sizes (XS, XL...). Each of these rows has a image scr link
|
402 |
-
list_col=df_copy.loc[pd.isna(df_copy.loc[:,'Product Name']), :].index
|
403 |
-
images=df_copy.loc[list_col,'Image Src']
|
404 |
-
list_end=[]
|
405 |
-
for row in df_copy.index:
|
406 |
-
#NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
|
407 |
-
if pd.notna(df_copy.loc[row,'Product Name']):
|
408 |
-
#print(df_copy.loc[row,'Product Name'])
|
409 |
-
rowNotNa=row
|
410 |
-
i=1
|
411 |
-
#j=1
|
412 |
-
list_img=[]
|
413 |
-
#WE INCLUDE IN THE LIST THE FIRST IMAGE
|
414 |
-
list_img.append(df_copy.loc[row,'Image Src'])
|
415 |
-
while pd.isna(df_copy.loc[row+i,'Product Name']) and row+i<len(df_copy.index)-1:
|
416 |
-
#WE ADD THE REST OF THE IMAGES (FOLLOWING ROWS)
|
417 |
-
if "http" in str(df_copy.loc[row+i,'Image Src']):
|
418 |
-
list_img.append(df_copy.loc[row+i,'Image Src'])
|
419 |
-
i=i+1
|
420 |
-
list_end.append(list_img)
|
421 |
-
|
422 |
-
#IN list_end WE HAVE ALL OF THE IMAGES FOR EACH PRODUCT NAME
|
423 |
-
index_nonnan=df_copy.loc[pd.notna(df_copy.loc[:,'Product Name']), :].index
|
424 |
-
max=0
|
425 |
-
for i in range(len(list_end)):
|
426 |
-
if max<len(list_end[i]):
|
427 |
-
max=len(list_end[i])
|
428 |
-
print("SKUf")
|
429 |
-
print(df_copy.iloc[:,2])
|
430 |
-
|
431 |
-
#WE CHANGE THE COLUMN NAME OF THE COLUMNS WHERE THERE ARE IMAGES: EACH COLUMN IS CALLED "Image x"
|
432 |
-
#We first delete old values in the Image columns
|
433 |
-
for j in range(max):
|
434 |
-
df_copy.iloc[:,25+j]=''
|
435 |
-
|
436 |
-
counter=0
|
437 |
-
for index in index_nonnan:
|
438 |
-
for j in range(len(list_end[counter])):
|
439 |
-
|
440 |
-
|
441 |
-
if list_end[counter][j]!='nan':
|
442 |
-
df_copy.iloc[index,25+j]=list_end[counter][j]
|
443 |
-
df_copy.rename(columns={df_copy.columns[25+j]: 'Image'+str(j+1)},inplace=True)
|
444 |
-
|
445 |
-
counter=counter+1
|
446 |
-
print("SKUf")
|
447 |
-
print(df_copy.iloc[:,2])
|
448 |
-
#WE HAVE TO FILL NAN ROWS (SAME PRODUCT BUT DIFFERENT SIZES) WITH THE SAME IMAGES THAT IN NON NAN ROWS (MAIN PRODUCT-SIZE)
|
449 |
-
listImages=[None] * max
|
450 |
-
list1=[None] * max
|
451 |
-
list2=[None] * max
|
452 |
-
list3=[None] * max
|
453 |
-
list4=[None] * max
|
454 |
-
list5=[None] * max
|
455 |
-
for index, row in df_copy.iterrows():
|
456 |
-
#NotNA gets rows where Product Name column has a name in it (first image and row where we should add the images)
|
457 |
-
#print(df_copy.iloc[index,1])
|
458 |
-
if pd.notna(df_copy.iloc[index,1]):
|
459 |
-
for j in range(0,max):
|
460 |
-
listImages[j]=str((df_copy.iloc[index,25+j]))
|
461 |
-
#list1[j]=str((df_copy.iloc[index,1+j]))
|
462 |
-
#list2[j]=str((df_copy.iloc[index,10+j]))
|
463 |
-
#list3[j]=str((df_copy.iloc[index,12+j]))
|
464 |
-
#list4[j]=str((df_copy.iloc[index,31+j]))
|
465 |
-
#list5[j]=str((df_copy.iloc[index,32+j]))
|
466 |
-
list1[j]=str((df_copy.iloc[index,1]))
|
467 |
-
list2[j]=str((df_copy.iloc[index,10]))
|
468 |
-
list3[j]=str((df_copy.iloc[index,12]))
|
469 |
-
list4[j]=str((df_copy.iloc[index,31]))
|
470 |
-
list5[j]=str((df_copy.iloc[index,32]))
|
471 |
-
|
472 |
-
else:
|
473 |
-
for j in range(0,max):
|
474 |
-
df_copy.iloc[index,25+j]=listImages[j]
|
475 |
-
#df_copy.iloc[index,1+j]=list1[j]
|
476 |
-
#df_copy.iloc[index,10+j]=list2[j]
|
477 |
-
#df_copy.iloc[index,12+j]=list3[j]
|
478 |
-
#df_copy.iloc[index,31+j]=list4[j]
|
479 |
-
#df_copy.iloc[index,32+j]=list5[j]
|
480 |
-
df_copy.iloc[index,1]=list1[j]
|
481 |
-
df_copy.iloc[index,10]=list2[j]
|
482 |
-
df_copy.iloc[index,12]=list3[j]
|
483 |
-
df_copy.iloc[index,31]=list4[j]
|
484 |
-
df_copy.iloc[index,32]=list5[j]
|
485 |
-
|
486 |
-
#endregion
|
487 |
-
|
488 |
-
print("SKUf")
|
489 |
-
print(df_copy.iloc[:,2])
|
490 |
-
#print(df_copy.iloc[:,3])
|
491 |
-
|
492 |
-
###################################################################################
|
493 |
-
#df_copy.to_excel('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.xlsx',index=False)
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
#df_copy.to_csv('C:/Users/15572890/Desktop/I+D/MarksCsvConversion/Validation2/OCCHIO-Cycle-Data-File_st.csv',index=False, encoding='utf_8_sig')
|
498 |
-
return df_copy
|
499 |
-
|
500 |
-
|
501 |
-
def convert_df(df):
|
502 |
-
return df.to_csv(index=False).encode('utf_8_sig')
|
503 |
-
|
504 |
-
if uploaded_file and uploaded_file2:
|
505 |
-
df3=ConvertCitrus(df,df2)
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
csv = convert_df(df3)
|
510 |
-
|
511 |
-
st.download_button(
|
512 |
-
"Press to Download",
|
513 |
-
csv,
|
514 |
-
"file.csv",
|
515 |
-
"text/csv",
|
516 |
-
key='download-csv'
|
517 |
-
)
|
|
|
1 |
+
import streamlit as st #line:1
|
2 |
+
import pandas as pd #line:2
|
3 |
+
uploaded_file =st .file_uploader ("Choose product file",type ="csv")#line:4
|
4 |
+
if uploaded_file :#line:6
|
5 |
+
df =pd .read_csv (uploaded_file ,encoding ='utf8')#line:8
|
6 |
+
uploaded_file2 =st .file_uploader ("Choose inventory file",type ="csv")#line:11
|
7 |
+
if uploaded_file2 :#line:13
|
8 |
+
df2 =pd .read_csv (uploaded_file2 ,encoding ='utf8')#line:15
|
9 |
+
def ConvertCitrus (O00O000OOOO0O00O0 ,OOO0O0O0OOO0O00O0 ):#line:21
|
10 |
+
import RemoveHTMLtags as RHT #line:24
|
11 |
+
O0OOOOOO00O000OO0 =str ('<style type=')+str ('"')+str ('"')+str ('text/css')+str ('"')+str ('"')+str ('><!--')#line:32
|
12 |
+
OOOO00O00000O00O0 =['<p class=','"p1"','data-mce-fragment="1">,','<b data-mce-fragment="1">','<i data-mce-fragment="1">','<p>','</p>','<p*>','<ul>','</ul>','</i>','</b>','</p>','</br>','<li>','</li>','<br>','<strong>','</strong>','<span*>','</span>','"utf-8"','UTF-8','<a href*>','</a>','<meta charset=utf-8>',';;','<em>','</em>','"','<meta charset=','utf-8>','<p>','<p','data-mce-fragment=1',';','<style type=','<style type=','><!--','text/css','<style type=\"\"text/css\"\"><!--','--></style>','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']#line:41
|
13 |
+
for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in O00O000OOOO0O00O0 .iterrows ():#line:55
|
14 |
+
O00O000OOOO0O00O0 .iloc [O0OO0OOOOO0O0O000 ,2 ]=RHT .remove_tags (str (O00O000OOOO0O00O0 .iloc [O0OO0OOOOO0O0O000 ,2 ]))#line:56
|
15 |
+
print (O00O000OOOO0O00O0 .iloc [:,2 ])#line:58
|
16 |
+
O00O000OOOO0O00O0 .iloc [:,2 ]=pd .Series (O00O000OOOO0O00O0 .iloc [:,2 ],dtype ="string")#line:63
|
17 |
+
print (O00O000OOOO0O00O0 .iloc [:,2 ].dtype )#line:64
|
18 |
+
O0000OOOOO000000O =O00O000OOOO0O00O0 .columns .tolist ()#line:88
|
19 |
+
O0000OO0OOO0OOO0O =O0000OOOOO000000O .copy ()#line:89
|
20 |
+
O0000OO0OOO0OOO0O [1 ]=O0000OOOOO000000O [1 ]#line:90
|
21 |
+
O0000OO0OOO0OOO0O [17 ]=O0000OOOOO000000O [17 ]#line:92
|
22 |
+
OO00O0000O0OO0000 =O00O000OOOO0O00O0 [O0000OO0OOO0OOO0O ].copy (deep =True )#line:113
|
23 |
+
print ("SKU")#line:114
|
24 |
+
print (O00O000OOOO0O00O0 .iloc [:,24 ])#line:115
|
25 |
+
OO0OO000O0OO0000O =O00O000OOOO0O00O0 .copy (deep =True )#line:117
|
26 |
+
OO00O0000O0OO0000 .iloc [:,0 ]=OO0OO000O0OO0000O .iloc [:,13 ].copy (deep =True )#line:119
|
27 |
+
OO00O0000O0OO0000 .iloc [:,5 ]=OO0OO000O0OO0000O .iloc [:,20 ].copy (deep =True )#line:120
|
28 |
+
OO00O0000O0OO0000 .iloc [:,7 ]=OO0OO000O0OO0000O .iloc [:,11 ].copy (deep =True )#line:121
|
29 |
+
OO00O0000O0OO0000 .iloc [:,2 ]=OO0OO000O0OO0000O .iloc [:,24 ].copy (deep =True )#line:123
|
30 |
+
OO00O0000O0OO0000 .iloc [:,8 ]=OO0OO000O0OO0000O .iloc [:,9 ].copy (deep =True )#line:125
|
31 |
+
OO00O0000O0OO0000 .iloc [:,10 ]=OO0OO000O0OO0000O .iloc [:,3 ].copy (deep =True )#line:126
|
32 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [10 ]:'Brand'},inplace =True )#line:127
|
33 |
+
OO00O0000O0OO0000 .columns .values [10 ]='Brand'#line:128
|
34 |
+
OO00O0000O0OO0000 .iloc [:,30 ]=OO0OO000O0OO0000O .iloc [:,15 ].copy (deep =True )#line:130
|
35 |
+
OO00O0000O0OO0000 .iloc [:,31 ]=OO0OO000O0OO0000O .iloc [:,5 ].copy (deep =True )#line:131
|
36 |
+
OO00O0000O0OO0000 .iloc [:,32 ]=OO0OO000O0OO0000O .iloc [:,2 ].copy (deep =True )#line:132
|
37 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [8 ]:'Size 1'},inplace =True )#line:134
|
38 |
+
print (list (OO00O0000O0OO0000 .columns .values ))#line:136
|
39 |
+
OO00O0000O0OO0000 .iloc [:,20 ]=OO00O0000O0OO0000 .iloc [:,20 ].astype (float )#line:139
|
40 |
+
OO00O0000O0OO0000 .iloc [:,4 ]=(((OO00O0000O0OO0000 .iloc [:,20 ]/1.2 )/1.96 )*0.96 )#line:141
|
41 |
+
from babel .numbers import format_currency #line:142
|
42 |
+
OO00O0000O0OO0000 .iloc [:,4 ]=OO00O0000O0OO0000 .iloc [:,4 ].apply (lambda O0OOO0O00OOO0OO0O :format_currency (O0OOO0O00OOO0OO0O ,currency ="GBP",locale ="en_GB"))#line:143
|
43 |
+
OO00O0000O0OO0000 .iloc [:,5 ]=OO00O0000O0OO0000 .iloc [:,5 ].apply (lambda O000O0OO000O0000O :format_currency (O000O0OO000O0000O ,currency ="GBP",locale ="en_GB"))#line:144
|
44 |
+
print (((OO00O0000O0OO0000 .iloc [:,20 ]/1.2 )/1.96 )*0.96 )#line:146
|
45 |
+
OO00O0000O0OO0000 .iloc [:,2 ]=OO00O0000O0OO0000 .iloc [:,2 ].astype (str ).str .replace ("'","")#line:148
|
46 |
+
OO00O0000O0OO0000 .iloc [:,24 ]=OO00O0000O0OO0000 .iloc [:,24 ].astype (str ).str .replace ("'","")#line:152
|
47 |
+
print ("SKU")#line:154
|
48 |
+
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:155
|
49 |
+
print (list (OO00O0000O0OO0000 .columns .values ))#line:174
|
50 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:179
|
51 |
+
for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .iterrows ():#line:182
|
52 |
+
if O0OO0OOOOO0O0O000 ==0 :#line:183
|
53 |
+
print (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)'])#line:184
|
54 |
+
if " mens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:185
|
55 |
+
if " womens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:186
|
56 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Unisex"#line:187
|
57 |
+
else :#line:188
|
58 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Mens"#line:189
|
59 |
+
if " womens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:191
|
60 |
+
if " mens"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:192
|
61 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Unisex"#line:193
|
62 |
+
else :#line:194
|
63 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Womens"#line:195
|
64 |
+
if " ladys"in str (O0O0O00O00OO00OO0 ['Colour Code (Simple Colour)']):#line:196
|
65 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]="Ladys"#line:197
|
66 |
+
if O0OO0OOOOO0O0O000 ==0 :#line:198
|
67 |
+
print (O0O0O00O00OO00OO0 [12 ])#line:199
|
68 |
+
print (OO00O0000O0OO0000 .iloc [:,12 ])#line:200
|
69 |
+
OO00O0000O0OO0000 .iloc [:,6 ]=""#line:204
|
70 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [0 ]:'Style Number'},inplace =True )#line:206
|
71 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [1 ]:'Product Name'},inplace =True )#line:207
|
72 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [2 ]:'Vendor SKU'},inplace =True )#line:208
|
73 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [3 ]:'UPC/EAN'},inplace =True )#line:209
|
74 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [4 ]:'Unit Cost'},inplace =True )#line:210
|
75 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [5 ]:'Unit MSRP'},inplace =True )#line:211
|
76 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:212
|
77 |
+
print (OO00O0000O0OO0000 .columns [6 ])#line:213
|
78 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [7 ]:'Colour'},inplace =True )#line:214
|
79 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [8 ]:'Size 1'},inplace =True )#line:216
|
80 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [9 ]:'Size 2'},inplace =True )#line:217
|
81 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [10 ]:'Brand'},inplace =True )#line:218
|
82 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [11 ]:'Year of Season'},inplace =True )#line:219
|
83 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [12 ]:'Gender'},inplace =True )#line:220
|
84 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [13 ]:'Manufacturer Part Code'},inplace =True )#line:221
|
85 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [14 ]:'Other Bar Code'},inplace =True )#line:222
|
86 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [15 ]:'VAT'},inplace =True )#line:223
|
87 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [16 ]:'Pack Qty'},inplace =True )#line:224
|
88 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [17 ]:'Stock Count'},inplace =True )#line:226
|
89 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [18 ]:'Price Band 1'},inplace =True )#line:227
|
90 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [19 ]:'Price Band 2'},inplace =True )#line:228
|
91 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [20 ]:'IE VAT'},inplace =True )#line:229
|
92 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [21 ]:'Unit Cost in Euros'},inplace =True )#line:230
|
93 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [22 ]:'MSRP in Euros'},inplace =True )#line:231
|
94 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [23 ]:'Commodity Codes'},inplace =True )#line:233
|
95 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [24 ]:'Country of Origin'},inplace =True )#line:234
|
96 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [30 ]:'Weight'},inplace =True )#line:236
|
97 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [31 ]:'Short Description'},inplace =True )#line:237
|
98 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [32 ]:'Long Description'},inplace =True )#line:238
|
99 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [33 ]:'Video Link'},inplace =True )#line:239
|
100 |
+
OO00O0000O0OO0000 .iloc [:,9 ]=""#line:247
|
101 |
+
OO00O0000O0OO0000 .iloc [:,13 ]=""#line:249
|
102 |
+
OO00O0000O0OO0000 .iloc [:,14 ]=""#line:251
|
103 |
+
OO00O0000O0OO0000 .iloc [:,16 ]=""#line:253
|
104 |
+
OO00O0000O0OO0000 .iloc [:,18 ]=""#line:255
|
105 |
+
OO00O0000O0OO0000 .iloc [:,19 ]=""#line:257
|
106 |
+
OO00O0000O0OO0000 .iloc [:,20 ]=""#line:259
|
107 |
+
OO00O0000O0OO0000 .iloc [:,21 ]=""#line:261
|
108 |
+
OO00O0000O0OO0000 .iloc [:,22 ]=""#line:263
|
109 |
+
OO00O0000O0OO0000 .iloc [:,33 ]=""#line:268
|
110 |
+
OO00O0000O0OO0000 .iloc [:,15 ]="20"#line:273
|
111 |
+
print (list (OO00O0000O0OO0000 .columns .values ))#line:275
|
112 |
+
OO00O0000O0OO0000 .iloc [:,3 ]=OO00O0000O0OO0000 .iloc [:,2 ]#line:278
|
113 |
+
OO00O0000O0OO0000 .columns .values [10 ]='Brand'#line:279
|
114 |
+
OO00O0000O0OO0000 .iloc [:,11 ]=""#line:280
|
115 |
+
OO00O0000O0OO0000 .iloc [:,22 ]=""#line:281
|
116 |
+
print ("SKU")#line:285
|
117 |
+
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:286
|
118 |
+
OO00O0000O0OO0000 .iloc [:,23 ]=""#line:291
|
119 |
+
OO00O0000O0OO0000 .iloc [:,24 ]=""#line:294
|
120 |
+
OO0OOOO0O0OOO00O0 =O00O000OOOO0O00O0 ['Variant SKU']#line:303
|
121 |
+
OO0O00O00O00OO0O0 =O00O000OOOO0O00O0 ['Variant SKU'].duplicated ().any ()#line:304
|
122 |
+
OO0O00O00O00OO0O0 =OOO0O0O0OOO0O00O0 ['SKU'].duplicated ().any ()#line:306
|
123 |
+
O000OO000O0000O00 =OOO0O0O0OOO0O00O0 [OOO0O0O0OOO0O00O0 .duplicated (['SKU'],keep =False )]#line:308
|
124 |
+
OOOO0OO00O0O00000 =O00O000OOOO0O00O0 [O00O000OOOO0O00O0 .duplicated (['Variant SKU'],keep =False )]#line:311
|
125 |
+
OOO0O0O0OOO0O00O0 =OOO0O0O0OOO0O00O0 .set_index ('SKU')#line:315
|
126 |
+
OOO0O0O0OOO0O00O0 .reindex (OO0OOOO0O0OOO00O0 )#line:320
|
127 |
+
print ("TERMINE")#line:337
|
128 |
+
OO00O0000O0OO0000 .iloc [:,24 ]=OOO0O0O0OOO0O00O0 .loc [:,'COO']#line:339
|
129 |
+
OO00O0000O0OO0000 .iloc [:,23 ]=OOO0O0O0OOO0O00O0 .loc [:,'HS Code']#line:340
|
130 |
+
OO00O0000O0OO0000 ['Commodity Codes']=OOO0O0O0OOO0O00O0 ['HS Code'].values #line:342
|
131 |
+
OO00O0000O0OO0000 ['Country of Origin']=OOO0O0O0OOO0O00O0 ['COO'].values #line:343
|
132 |
+
print ("SKU")#line:350
|
133 |
+
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:351
|
134 |
+
OO00O00OOOO0O00O0 =[]#line:356
|
135 |
+
for OO0OOOO000OO0OO00 in range (49 ,58 ):#line:357
|
136 |
+
OO00O00OOOO0O00O0 .append (str (OO0OOOO000OO0OO00 ))#line:359
|
137 |
+
OO00O0000O0OO0000 [str (OO0OOOO000OO0OO00 )]=''#line:360
|
138 |
+
O0000000OOOOO0O0O =[]#line:364
|
139 |
+
for OO0OOOO000OO0OO00 in range (0 ,24 ):#line:365
|
140 |
+
O0000000OOOOO0O0O .append (34 +OO0OOOO000OO0OO00 )#line:366
|
141 |
+
OOOO0OO0OO0OO0OOO =OO00O0000O0OO0000 .columns [O0000000OOOOO0O0O ]#line:372
|
142 |
+
O000000O00OOO000O =['Tech Specs','Size Chart','Geometry Chart','Frame','Rear Shock','Fork','Headset','Stem','Handlebar','Bar Tape / Grip','Brakes Levers','Brake Calipers','Tyres','Wheels','Front Derailleur','Rear Derailleur','Shift Levers','Chain','Cassette','Chainset','Bottom Bracket','Pedals','Saddle','Seatpost']#line:373
|
143 |
+
OOOO0OO0OO0OO0OOO =OO00O0000O0OO0000 .columns [O0000000OOOOO0O0O ]#line:374
|
144 |
+
OO00O0000O0OO0000 .rename (columns =dict (zip (OOOO0OO0OO0OO0OOO ,O000000O00OOO000O )),inplace =True )#line:375
|
145 |
+
OO00O0000O0OO0000 .iloc [:,34 :58 ]=''#line:378
|
146 |
+
print ("SKUf")#line:381
|
147 |
+
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:382
|
148 |
+
O0O0OO000OO0OO000 =OO00O0000O0OO0000 .loc [pd .isna (OO00O0000O0OO0000 .loc [:,'Product Name']),:].index #line:402
|
149 |
+
O000O00000000O0O0 =OO00O0000O0OO0000 .loc [O0O0OO000OO0OO000 ,'Image Src']#line:403
|
150 |
+
O00O00OO0OO000OOO =[]#line:404
|
151 |
+
for O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .index :#line:405
|
152 |
+
if pd .notna (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 ,'Product Name']):#line:407
|
153 |
+
OO00O0OOOO000O0OO =O0O0O00O00OO00OO0 #line:409
|
154 |
+
OO0OOOO000OO0OO00 =1 #line:410
|
155 |
+
OO000OOOOO0OOOO0O =[]#line:412
|
156 |
+
OO000OOOOO0OOOO0O .append (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 ,'Image Src'])#line:414
|
157 |
+
while pd .isna (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Product Name'])and O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 <len (OO00O0000O0OO0000 .index )-1 :#line:415
|
158 |
+
if "http"in str (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Image Src']):#line:417
|
159 |
+
OO000OOOOO0OOOO0O .append (OO00O0000O0OO0000 .loc [O0O0O00O00OO00OO0 +OO0OOOO000OO0OO00 ,'Image Src'])#line:418
|
160 |
+
OO0OOOO000OO0OO00 =OO0OOOO000OO0OO00 +1 #line:419
|
161 |
+
O00O00OO0OO000OOO .append (OO000OOOOO0OOOO0O )#line:420
|
162 |
+
O00OOO00O0OOOOOOO =OO00O0000O0OO0000 .loc [pd .notna (OO00O0000O0OO0000 .loc [:,'Product Name']),:].index #line:423
|
163 |
+
OOOOOO00O00OO000O =0 #line:424
|
164 |
+
for OO0OOOO000OO0OO00 in range (len (O00O00OO0OO000OOO )):#line:425
|
165 |
+
if OOOOOO00O00OO000O <len (O00O00OO0OO000OOO [OO0OOOO000OO0OO00 ]):#line:426
|
166 |
+
OOOOOO00O00OO000O =len (O00O00OO0OO000OOO [OO0OOOO000OO0OO00 ])#line:427
|
167 |
+
print ("SKUf")#line:428
|
168 |
+
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:429
|
169 |
+
for OO0O0000OO0O0O0OO in range (OOOOOO00O00OO000O ):#line:433
|
170 |
+
OO00O0000O0OO0000 .iloc [:,25 +OO0O0000OO0O0O0OO ]=''#line:434
|
171 |
+
O00OO0OOOOO0O000O =0 #line:436
|
172 |
+
for O0OO0OOOOO0O0O000 in O00OOO00O0OOOOOOO :#line:437
|
173 |
+
for OO0O0000OO0O0O0OO in range (len (O00O00OO0OO000OOO [O00OO0OOOOO0O000O ])):#line:438
|
174 |
+
if O00O00OO0OO000OOO [O00OO0OOOOO0O000O ][OO0O0000OO0O0O0OO ]!='nan':#line:441
|
175 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]=O00O00OO0OO000OOO [O00OO0OOOOO0O000O ][OO0O0000OO0O0O0OO ]#line:442
|
176 |
+
OO00O0000O0OO0000 .rename (columns ={OO00O0000O0OO0000 .columns [25 +OO0O0000OO0O0O0OO ]:'Image'+str (OO0O0000OO0O0O0OO +1 )},inplace =True )#line:443
|
177 |
+
O00OO0OOOOO0O000O =O00OO0OOOOO0O000O +1 #line:445
|
178 |
+
print ("SKUf")#line:446
|
179 |
+
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:447
|
180 |
+
OO0OOO000OO0O0O0O =[None ]*OOOOOO00O00OO000O #line:449
|
181 |
+
OOOOO00O0OOOOOOOO =[None ]*OOOOOO00O00OO000O #line:450
|
182 |
+
O0O0O0000O0OO0OOO =[None ]*OOOOOO00O00OO000O #line:451
|
183 |
+
O000O0O0OO00OOO00 =[None ]*OOOOOO00O00OO000O #line:452
|
184 |
+
O0O0000O00O000OO0 =[None ]*OOOOOO00O00OO000O #line:453
|
185 |
+
O0000O0O000O0OO00 =[None ]*OOOOOO00O00OO000O #line:454
|
186 |
+
for O0OO0OOOOO0O0O000 ,O0O0O00O00OO00OO0 in OO00O0000O0OO0000 .iterrows ():#line:455
|
187 |
+
if pd .notna (OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]):#line:458
|
188 |
+
for OO0O0000OO0O0O0OO in range (0 ,OOOOOO00O00OO000O ):#line:459
|
189 |
+
OO0OOO000OO0O0O0O [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]))#line:460
|
190 |
+
OOOOO00O0OOOOOOOO [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]))#line:466
|
191 |
+
O0O0O0000O0OO0OOO [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,10 ]))#line:467
|
192 |
+
O000O0O0OO00OOO00 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]))#line:468
|
193 |
+
O0O0000O00O000OO0 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,31 ]))#line:469
|
194 |
+
O0000O0O000O0OO00 [OO0O0000OO0O0O0OO ]=str ((OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,32 ]))#line:470
|
195 |
+
else :#line:472
|
196 |
+
for OO0O0000OO0O0O0OO in range (0 ,OOOOOO00O00OO000O ):#line:473
|
197 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,25 +OO0O0000OO0O0O0OO ]=OO0OOO000OO0O0O0O [OO0O0000OO0O0O0OO ]#line:474
|
198 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,1 ]=OOOOO00O0OOOOOOOO [OO0O0000OO0O0O0OO ]#line:480
|
199 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,10 ]=O0O0O0000O0OO0OOO [OO0O0000OO0O0O0OO ]#line:481
|
200 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,12 ]=O000O0O0OO00OOO00 [OO0O0000OO0O0O0OO ]#line:482
|
201 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,31 ]=O0O0000O00O000OO0 [OO0O0000OO0O0O0OO ]#line:483
|
202 |
+
OO00O0000O0OO0000 .iloc [O0OO0OOOOO0O0O000 ,32 ]=O0000O0O000O0OO00 [OO0O0000OO0O0O0OO ]#line:484
|
203 |
+
print ("SKUf")#line:488
|
204 |
+
print (OO00O0000O0OO0000 .iloc [:,2 ])#line:489
|
205 |
+
return OO00O0000O0OO0000 #line:498
|
206 |
+
def convert_df (OO00OO0O00O00OOOO ):#line:501
|
207 |
+
return OO00OO0O00O00OOOO .to_csv (index =False ).encode ('utf_8_sig')#line:502
|
208 |
+
if uploaded_file and uploaded_file2 :#line:504
|
209 |
+
df3 =ConvertCitrus (df ,df2 )#line:505
|
210 |
+
csv =convert_df (df3 )#line:509
|
211 |
+
st .download_button ("Press to Download",csv ,"file.csv","text/csv",key ='download-csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|