Jatayu / app.py
ItsJATAYU's picture
Create app.py
147a8af verified
raw
history blame
1.81 kB
import gradio as gr
import torch
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel
from PIL import Image
# Load ControlNet model
controlnet = ControlNetModel.from_pretrained(
"rsortino/ColorizeNet",
torch_dtype=torch.float16,
use_safetensors=True
)
# Load the pipeline
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1",
controlnet=controlnet,
torch_dtype=torch.float16
)
# Move to CUDA if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipe.to(device)
# Disable safety checker
pipe.safety_checker = lambda images, **kwargs: (images, False)
def colorize(image: Image.Image) -> Image.Image:
image = image.convert("RGB").resize((512, 512))
result = pipe(
prompt="A realistic colorized version of this image.",
image=image,
control_image=image,
strength=1.0,
guidance_scale=9.0,
num_inference_steps=30
)
return result.images[0]
with gr.Blocks() as demo:
gr.Markdown("## 🎨 ColorizeNet - Grayscale to Color Image")
gr.Markdown("Upload a grayscale image. The model will generate a realistic colorized version.")
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Grayscale Input", type="pil")
submit_btn = gr.Button("Colorize")
with gr.Column():
output_img = gr.Image(label="Colorized Output", type="pil")
download_btn = gr.Button("Download")
def handle_colorize(img):
return colorize(img)
def download_image(img):
return img
submit_btn.click(fn=handle_colorize, inputs=input_img, outputs=output_img)
download_btn.click(fn=download_image, inputs=output_img, outputs=gr.File())
demo.launch()