File size: 1,811 Bytes
147a8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
import torch
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel
from PIL import Image

# Load ControlNet model
controlnet = ControlNetModel.from_pretrained(
    "rsortino/ColorizeNet",
    torch_dtype=torch.float16,
    use_safetensors=True
)

# Load the pipeline
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1",
    controlnet=controlnet,
    torch_dtype=torch.float16
)

# Move to CUDA if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipe.to(device)

# Disable safety checker
pipe.safety_checker = lambda images, **kwargs: (images, False)

def colorize(image: Image.Image) -> Image.Image:
    image = image.convert("RGB").resize((512, 512))
    result = pipe(
        prompt="A realistic colorized version of this image.",
        image=image,
        control_image=image,
        strength=1.0,
        guidance_scale=9.0,
        num_inference_steps=30
    )
    return result.images[0]

with gr.Blocks() as demo:
    gr.Markdown("## 🎨 ColorizeNet - Grayscale to Color Image")
    gr.Markdown("Upload a grayscale image. The model will generate a realistic colorized version.")

    with gr.Row():
        with gr.Column():
            input_img = gr.Image(label="Grayscale Input", type="pil")
            submit_btn = gr.Button("Colorize")

        with gr.Column():
            output_img = gr.Image(label="Colorized Output", type="pil")
            download_btn = gr.Button("Download")

    def handle_colorize(img):
        return colorize(img)

    def download_image(img):
        return img

    submit_btn.click(fn=handle_colorize, inputs=input_img, outputs=output_img)
    download_btn.click(fn=download_image, inputs=output_img, outputs=gr.File())

demo.launch()