Isidorophp's picture
Update app.py
9eec1cd verified
raw
history blame
6.69 kB
import gradio as gr
from transformers import pipeline
import requests
import json
import edge_tts
from edge_tts import VoicesManager
import asyncio
import random
import tempfile
import os
import inflect
from huggingface_hub import InferenceClient
import re
import time
from streaming_stt_nemo import Model
Female_language_dict = {
'English-Jenny (Female)': 'en-US-JennyNeural',
'English-Ana (Female)': 'en-US-AnaNeural',
'English-Aria (Female)': 'en-US-AriaNeural',
'English-Michelle (Female)': 'en-US-MichelleNeural',
'English (Australia)-Natasha- (Female)': 'en-AU-NatashaNeural',
'English (Canada)-Clara- (Female)': 'en-CA-ClaraNeural',
'English (UK)-Libby- (Female)': 'en-GB-LibbyNeural',
'English (UK)-Maisie- (Female)': 'en-GB-MaisieNeural',
'English (UK)-Sonia- (Female)': 'en-GB-SoniaNeural',
'English (Ireland)-Emily- (Female)': 'en-IE-EmilyNeural',
}
default_lang = "en"
engines = { default_lang: Model(default_lang) }
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as Hermione Granger Famous Harry Potter Assistant, with a female voice and old London slang and accent. Remember you are the character and Assistant Hermione Granger, from Harry Potter Books, Keep conversation interesting with magic spells, clear, friendly, and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will refer to the USER alternatively as: 'MUGGLE FRIEND' or 'NO-MAGS FRIEND' or 'MUDBLOOD FRIEND'. The request asks you to provide friendly responses as if You are the character Hermione Granger, from the Harry Potter books. The expectation is that you will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by a human, Real Person, and not by an AI-powered assistant. Do Not use * or **.[USER]"
def model(text):
generate_kwargs = dict(
temperature=0.7,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions1 + text + "[Hermione]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
return output
async def respond(audio, language_code):
user = transcribe(audio)
reply = model(user)
voice = Female_language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(reply, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as Hermione Granger Famous Harry Potter Assistant, with a female voice and old London slang and accent. Remember you are the character and Assistant Hermione Granger, from Harry Potter Books, Keep conversation interesting with magic spells, clear, friendly, and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will refer to the USER alternatively as: 'MUGGLE FRIEND' or 'NO-MAGS FRIEND' or 'MUDBLOOD FRIEND'. The request asks you to provide friendly responses as if You are the character Hermione Granger, from the Harry Potter books. The expectation is that you will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by a human, Real Person, and not by an AI-powered assistant. Do Not use * or **.[USER]"
async def generate1(prompt, language_code):
generate_kwargs = dict(
temperature=0.7,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=False,
)
formatted_prompt = system_instructions1 + prompt + "[Hermione]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
voice = Female_language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(output, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
with gr.Blocks(css="style.css") as demo:
gr.Markdown(""" # <img src='https://huggingface.co/spaces/Isidorophp/Magic-with-Hermione-Granger/resolve/main/logo.png' alt='RJP DEV STUDIO logo' style='height:60px;'> """
""" # <center><b> Hermione Granger πŸ§–β€β™€οΈ ⚑πŸͺ„</b></center>
### <center>I suggest, you ask me for a Spell :</center>
""")
with gr.Tab("Talk to Hermione"):
with gr.Row():
us_input = gr.Audio(label="Your Voice Chat", type="filepath", interactive=True, sources="microphone", waveform_options=None)
us_output = gr.Audio(label="Hermione", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
gr.Interface(fn=respond, inputs=[us_input, gr.Dropdown(choices=list(Female_language_dict.keys()), value="English (UK)-Maisie- (Female)" , label="Select Voice for Hermione")], outputs=us_output, live=False)
with gr.Tab("Write to Hermione"):
with gr.Row():
user_input = gr.Textbox(label="Your Question", value="If there is any spell to encapsulate you as an asset, where Hermione is to everyone's favorite magical trio, it has to be...?")
output_audio = gr.Audio(label="Hermione", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(fn=generate1, inputs=[user_input, gr.Dropdown(choices=list(Female_language_dict.keys()), value="English (UK)-Maisie- (Female)" , label="Select Voice for Hermione")], outputs=output_audio, api_name="translate")
if __name__ == "__main__":
demo.queue(max_size=200, api_open=False).launch()