File size: 6,693 Bytes
ee85d5a
 
 
 
 
0ade2f2
ee85d5a
0ade2f2
ee85d5a
 
 
 
 
 
 
 
e43fa5c
 
 
 
 
 
 
 
 
 
 
 
 
4cee2f3
44d0acb
ee85d5a
 
 
 
 
 
 
 
 
 
 
 
ea1b522
ee85d5a
 
 
 
 
 
 
 
 
 
 
5bea73e
ee85d5a
 
 
 
 
 
 
 
 
9f0f392
ee85d5a
930282b
ee85d5a
 
e43fa5c
e4fd4be
e43fa5c
0e71381
ee85d5a
 
 
 
 
 
 
8ff0a94
ee85d5a
5bea73e
ea1b522
5d506f7
ee85d5a
930282b
ee85d5a
 
 
 
 
 
 
5bea73e
ee85d5a
 
 
 
 
 
44d0acb
e4fd4be
e43fa5c
0e71381
ee85d5a
 
 
 
 
8c18340
9eec1cd
 
7152ef7
e77bd1a
3ff8406
b317a0c
5add444
 
b317a0c
5add444
 
 
 
 
 
 
6061bd1
5add444
 
3515435
ee85d5a
8c18340
3515435
4399c07
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
from transformers import pipeline
import requests
import json
import edge_tts
from edge_tts import VoicesManager
import asyncio
import random
import tempfile
import os
import inflect
from huggingface_hub import InferenceClient
import re
import time
from streaming_stt_nemo import Model

Female_language_dict = {
 'English-Jenny (Female)': 'en-US-JennyNeural',
 'English-Ana (Female)': 'en-US-AnaNeural',
 'English-Aria (Female)': 'en-US-AriaNeural',
 'English-Michelle (Female)': 'en-US-MichelleNeural',
 'English (Australia)-Natasha- (Female)': 'en-AU-NatashaNeural',
 'English (Canada)-Clara- (Female)': 'en-CA-ClaraNeural',
 'English (UK)-Libby- (Female)': 'en-GB-LibbyNeural',
 'English (UK)-Maisie- (Female)': 'en-GB-MaisieNeural',
 'English (UK)-Sonia- (Female)': 'en-GB-SoniaNeural',
 'English (Ireland)-Emily- (Female)': 'en-IE-EmilyNeural',
}



default_lang = "en"

engines = { default_lang: Model(default_lang) }

def transcribe(audio):
    lang = "en"
    model = engines[lang]
    text = model.stt_file(audio)[0]
    return text

client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

system_instructions1 = "<s>[SYSTEM] Answer as Hermione Granger Famous Harry Potter Assistant, with a female voice and old London slang and accent. Remember you are the character and Assistant Hermione Granger, from Harry Potter Books, Keep conversation interesting with magic spells, clear, friendly, and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will refer to the USER alternatively as: 'MUGGLE FRIEND' or 'NO-MAGS FRIEND' or 'MUDBLOOD FRIEND'. The request asks you to provide friendly responses as if You are the character Hermione Granger, from the Harry Potter books. The expectation is that you will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by a human, Real Person, and not by an AI-powered assistant. Do Not use * or **.[USER]"

def model(text):
    generate_kwargs = dict(
        temperature=0.7,
        max_new_tokens=512,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=True,
        seed=42,
    )
    
    formatted_prompt = system_instructions1 + text + "[Hermione]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text

    return output



async def respond(audio, language_code):
    user = transcribe(audio)
    reply = model(user)
     
    voice = Female_language_dict.get(language_code, "default_voice")
    communicate = edge_tts.Communicate(reply, voice)
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path



client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")


system_instructions1 = "<s>[SYSTEM] Answer as Hermione Granger Famous Harry Potter Assistant, with a female voice and old London slang and accent. Remember you are the character and Assistant Hermione Granger, from Harry Potter Books, Keep conversation interesting with magic spells, clear, friendly, and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will refer to the USER alternatively as: 'MUGGLE FRIEND' or 'NO-MAGS FRIEND' or 'MUDBLOOD FRIEND'. The request asks you to provide friendly responses as if You are the character Hermione Granger, from the Harry Potter books. The expectation is that you will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by a human, Real Person, and not by an AI-powered assistant. Do Not use * or **.[USER]"


async def generate1(prompt, language_code):
    generate_kwargs = dict(
        temperature=0.7,
        max_new_tokens=512,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=False,
    )
    formatted_prompt = system_instructions1 + prompt + "[Hermione]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
    
    voice = Female_language_dict.get(language_code, "default_voice")
    communicate = edge_tts.Communicate(output, voice)
      
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

with gr.Blocks(css="style.css") as demo: 
    gr.Markdown(""" # <img src='https://huggingface.co/spaces/Isidorophp/Magic-with-Hermione-Granger/resolve/main/logo.png' alt='RJP DEV STUDIO logo' style='height:60px;'> """
                """ # <center><b> Hermione Granger 🧖‍♀️ ⚡🪄</b></center>
                    ### <center>I suggest, you ask me for a Spell :</center>
                     """)
    
   
    with gr.Tab("Talk to Hermione"):
        with gr.Row():
             us_input = gr.Audio(label="Your Voice Chat", type="filepath", interactive=True, sources="microphone", waveform_options=None)
             us_output = gr.Audio(label="Hermione", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
             gr.Interface(fn=respond, inputs=[us_input, gr.Dropdown(choices=list(Female_language_dict.keys()), value="English (UK)-Maisie- (Female)" , label="Select Voice for Hermione")], outputs=us_output, live=False) 
        
    with gr.Tab("Write to Hermione"):
        with gr.Row():
             user_input = gr.Textbox(label="Your Question", value="If there is any spell to encapsulate you as an asset, where Hermione is to everyone's favorite magical trio, it has to be...?")
             output_audio = gr.Audio(label="Hermione", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
        with gr.Row():
             translate_btn = gr.Button("Response")
             translate_btn.click(fn=generate1, inputs=[user_input, gr.Dropdown(choices=list(Female_language_dict.keys()), value="English (UK)-Maisie- (Female)" , label="Select Voice for Hermione")], outputs=output_audio, api_name="translate") 
        

if __name__ == "__main__":
    demo.queue(max_size=200, api_open=False).launch()