Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,995 Bytes
85d497c a9ee52d dd42569 a9ee52d dd42569 a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 6851f02 a9ee52d 04bf12b a9ee52d 44b2355 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b 20c665f 69bd30f dd42569 68f76b5 dd42569 68f76b5 757d63f 04bf12b 68f76b5 04bf12b dd42569 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b 20c665f a9ee52d 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b a9ee52d 44b2355 a9ee52d 04bf12b a9ee52d 44b2355 04bf12b a9ee52d dd42569 a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b a9ee52d 85d497c 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d dd42569 a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d dd42569 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 04bf12b a9ee52d 44b2355 a9ee52d 20c665f 04bf12b a9ee52d 44b2355 20c665f 04bf12b 20c665f a9ee52d 04bf12b a9ee52d 44b2355 68f76b5 a9ee52d 04bf12b 44b2355 68f76b5 04bf12b 68f76b5 44b2355 04bf12b 68f76b5 a9ee52d 04bf12b 68f76b5 04bf12b 68f76b5 04bf12b a9ee52d 04bf12b 68f76b5 04bf12b a9ee52d 44b2355 04bf12b 44b2355 a9ee52d 04bf12b 44b2355 a9ee52d 44b2355 68f76b5 04bf12b 68f76b5 44b2355 04bf12b 68f76b5 a9ee52d 04bf12b a9ee52d 68f76b5 04bf12b a9ee52d 68f76b5 dd42569 04bf12b 44b2355 04bf12b 44b2355 04bf12b 44b2355 04bf12b 44b2355 a9ee52d 68f76b5 a9ee52d 68f76b5 04bf12b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
import spaces
import gradio as gr
import torch
import os
import tempfile
import time
import polars as pl
import numpy as np
import logging
from pathlib import Path
from omegaconf import OmegaConf, DictConfig
from gradio_log import Log
# --- InstaNovo Imports ---
try:
from instanovo.transformer.model import InstaNovo
from instanovo.diffusion.multinomial_diffusion import InstaNovoPlus
from instanovo.utils import SpectrumDataFrame, ResidueSet, Metrics
from instanovo.transformer.dataset import SpectrumDataset, collate_batch
from instanovo.inference import (
GreedyDecoder,
KnapsackBeamSearchDecoder,
Knapsack,
ScoredSequence,
Decoder,
)
from instanovo.inference.diffusion import DiffusionDecoder
from instanovo.constants import (
MASS_SCALE,
MAX_MASS,
DIFFUSION_START_STEP,
)
from torch.utils.data import DataLoader
import torch.nn.functional as F # For padding
except ImportError as e:
raise ImportError(f"Failed to import InstaNovo components: {e}")
# --- Configuration ---
TRANSFORMER_MODEL_ID = "instanovo-v1.1.0"
DIFFUSION_MODEL_ID = "instanovoplus-v1.1.0-alpha"
KNAPSACK_DIR = Path("./knapsack_cache")
DEFAULT_CONFIG_PATH = Path(
"./configs/inference/default.yaml"
)
# Determine device
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
FP16 = DEVICE == "cuda"
# --- Global Variables (Load Models and Knapsack Once) ---
INSTANOVO: InstaNovo | None = None
INSTANOVO_CONFIG: DictConfig | None = None
INSTANOVOPLUS: InstaNovoPlus | None = None
INSTANOVOPLUS_CONFIG: DictConfig | None = None
KNAPSACK: Knapsack | None = None
RESIDUE_SET: ResidueSet | None = None
# --- Assets ---
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
# Create gradio temporary directory
temp_dir = Path('/tmp/gradio')
if not temp_dir.exists():
temp_dir.mkdir()
# Logging configuration
# TODO: create logfile per user/session
# see https://www.gradio.app/guides/resource-cleanup
log_file = "/tmp/instanovo_gradio_log.txt"
Path(log_file).touch()
logger = logging.getLogger("instanovo")
logger.setLevel(logging.INFO)
if not logger.handlers:
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(logging.INFO)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.INFO)
logger.addHandler(stream_handler)
def load_models_and_knapsack():
"""Loads the InstaNovo models and generates/loads the knapsack."""
global INSTANOVO, KNAPSACK, INSTANOVO_CONFIG, RESIDUE_SET, INSTANOVOPLUS, INSTANOVOPLUS_CONFIG
models_loaded = INSTANOVO is not None and INSTANOVOPLUS is not None
if models_loaded:
logger.info("Models already loaded.")
# Still check knapsack if not loaded
if KNAPSACK is None:
logger.info("Models loaded, but knapsack needs loading/generation.")
else:
return # All loaded
# --- Load Transformer Model ---
if INSTANOVO is None:
logger.info(f"Loading InstaNovo (Transformer) model: {TRANSFORMER_MODEL_ID} to {DEVICE}...")
try:
INSTANOVO, INSTANOVO_CONFIG = InstaNovo.from_pretrained(TRANSFORMER_MODEL_ID)
INSTANOVO.to(DEVICE)
INSTANOVO.eval()
RESIDUE_SET = INSTANOVO.residue_set
logger.info("Transformer model loaded successfully.")
except Exception as e:
logger.error(f"Error loading Transformer model: {e}")
raise gr.Error(f"Failed to load InstaNovo Transformer model: {TRANSFORMER_MODEL_ID}. Error: {e}")
else:
logger.info("Transformer model already loaded.")
# --- Load Diffusion Model ---
if INSTANOVOPLUS is None:
logger.info(f"Loading InstaNovo+ (Diffusion) model: {DIFFUSION_MODEL_ID} to {DEVICE}...")
try:
INSTANOVOPLUS, INSTANOVOPLUS_CONFIG = InstaNovoPlus.from_pretrained(DIFFUSION_MODEL_ID)
INSTANOVOPLUS.to(DEVICE)
INSTANOVOPLUS.eval()
if RESIDUE_SET is not None and INSTANOVOPLUS.residues != RESIDUE_SET:
logger.warning("Residue sets between Transformer and Diffusion models differ. Using Transformer's set.")
elif RESIDUE_SET is None:
RESIDUE_SET = INSTANOVOPLUS.residues
logger.info("Diffusion model loaded successfully.")
except Exception as e:
logger.error(f"Error loading Diffusion model: {e}")
gr.Warning(f"Failed to load InstaNovo+ Diffusion model ({DIFFUSION_MODEL_ID}): {e}. Diffusion modes will be unavailable.")
INSTANOVOPLUS = None
else:
logger.info("Diffusion model already loaded.")
# --- Knapsack Handling ---
# Only attempt knapsack loading/generation if the Transformer model is loaded
if INSTANOVO is not None and RESIDUE_SET is not None and KNAPSACK is None:
knapsack_exists = (
(KNAPSACK_DIR / "parameters.pkl").exists()
and (KNAPSACK_DIR / "masses.npy").exists()
and (KNAPSACK_DIR / "chart.npy").exists()
)
if knapsack_exists:
logger.info(f"Loading pre-generated knapsack from {KNAPSACK_DIR}...")
try:
KNAPSACK = Knapsack.from_file(str(KNAPSACK_DIR))
logger.info("Knapsack loaded successfully.")
except Exception as e:
logger.info(f"Error loading knapsack: {e}. Will attempt to regenerate.")
KNAPSACK = None
knapsack_exists = False
if not knapsack_exists:
logger.info("Knapsack not found or failed to load. Generating knapsack...")
try:
residue_masses_knapsack = dict(RESIDUE_SET.residue_masses.copy())
special_and_nonpositive = list(RESIDUE_SET.special_tokens) + [
k for k, v in residue_masses_knapsack.items() if v <= 0
]
if special_and_nonpositive:
logger.info(f"Excluding special/non-positive mass residues from knapsack: {special_and_nonpositive}")
for res in set(special_and_nonpositive):
if res in residue_masses_knapsack:
del residue_masses_knapsack[res]
valid_residue_indices = {
res: idx
for res, idx in RESIDUE_SET.residue_to_index.items()
if res in residue_masses_knapsack
}
if not residue_masses_knapsack:
raise ValueError("No valid residues with positive mass found for knapsack generation.")
KNAPSACK = Knapsack.construct_knapsack(
residue_masses=residue_masses_knapsack,
residue_indices=valid_residue_indices,
max_mass=MAX_MASS,
mass_scale=MASS_SCALE,
)
logger.info(f"Knapsack generated. Saving to {KNAPSACK_DIR}...")
KNAPSACK_DIR.mkdir(parents=True, exist_ok=True)
KNAPSACK.save(str(KNAPSACK_DIR))
logger.info("Knapsack saved.")
except Exception as e:
logger.error(f"Error generating or saving knapsack: {e}", exc_info=True)
gr.Warning(f"Failed to generate Knapsack. Knapsack Beam Search will not be available. Error: {e}")
KNAPSACK = None
elif KNAPSACK is not None:
logger.info("Knapsack already loaded.")
elif INSTANOVO is None:
logger.warning("Transformer model not loaded, skipping Knapsack loading/generation.")
# Load models and knapsack when the script starts
load_models_and_knapsack()
def create_inference_config(
input_path: str,
output_path: str,
) -> DictConfig:
"""Creates a base OmegaConf DictConfig for prediction environment."""
if DEFAULT_CONFIG_PATH.exists():
base_cfg = OmegaConf.load(DEFAULT_CONFIG_PATH)
logger.info(f"Loaded base config from {DEFAULT_CONFIG_PATH}")
else:
logger.info(f"Warning: Default config not found at {DEFAULT_CONFIG_PATH}. Using minimal config.")
base_cfg = OmegaConf.create({
"data_path": None, "instanovo_model": TRANSFORMER_MODEL_ID,
"instanovoplus_model": DIFFUSION_MODEL_ID, "output_path": None,
"knapsack_path": str(KNAPSACK_DIR), "denovo": True, "refine": True,
"num_beams": 1, "max_length": 40, "max_charge": 10,
"isotope_error_range": [0, 1], "subset": 1.0, "use_knapsack": False,
"save_beams": False, "batch_size": 64, "device": DEVICE, "fp16": FP16,
"log_interval": 500, "use_basic_logging": True,
"filter_precursor_ppm": 20, "filter_confidence": 1e-4,
"filter_fdr_threshold": 0.05, "suppressed_residues": None,
"disable_terminal_residues_anywhere": True,
"residue_remapping": {
"M(ox)": "M[UNIMOD:35]", "M(+15.99)": "M[UNIMOD:35]",
"S(p)": "S[UNIMOD:21]", "T(p)": "T[UNIMOD:21]", "Y(p)": "Y[UNIMOD:21]",
"S(+79.97)": "S[UNIMOD:21]", "T(+79.97)": "T[UNIMOD:21]", "Y(+79.97)": "Y[UNIMOD:21]",
"Q(+0.98)": "Q[UNIMOD:7]", "N(+0.98)": "N[UNIMOD:7]",
"Q(+.98)": "Q[UNIMOD:7]", "N(+.98)": "N[UNIMOD:7]",
"C(+57.02)": "C[UNIMOD:4]", "(+42.01)": "[UNIMOD:1]",
"(+43.01)": "[UNIMOD:5]", "(-17.03)": "[UNIMOD:385]",
},
"column_map": {
"Modified sequence": "modified_sequence", "MS/MS m/z": "precursor_mz",
"Mass": "precursor_mass", "Charge": "precursor_charge",
"Mass values": "mz_array", "Mass spectrum": "mz_array",
"Intensity": "intensity_array", "Raw intensity spectrum": "intensity_array",
"Scan number": "scan_number"
},
"index_columns": [
"scan_number", "precursor_mz", "precursor_charge",
"retention_time", "spectrum_id", "experiment_name",
],
})
cfg_overrides = {
"data_path": input_path, "output_path": output_path,
"device": DEVICE, "fp16": FP16, "denovo": True,
}
final_cfg = OmegaConf.merge(base_cfg, cfg_overrides)
logger.info(f"Created inference config:\n{OmegaConf.to_yaml(final_cfg)}")
return final_cfg
def _get_transformer_decoder(selection: str, config: DictConfig) -> tuple[Decoder, int, bool]:
"""Helper to instantiate the correct transformer decoder based on selection."""
global INSTANOVO, KNAPSACK
if INSTANOVO is None:
raise gr.Error("InstaNovo Transformer model not loaded.")
num_beams = 1
use_knapsack = False
decoder: Decoder
if "Greedy" in selection:
decoder = GreedyDecoder(
model=INSTANOVO,
mass_scale=MASS_SCALE,
suppressed_residues=config.get("suppressed_residues", None),
disable_terminal_residues_anywhere=config.get("disable_terminal_residues_anywhere", True),
)
elif "Knapsack" in selection:
if KNAPSACK is None:
raise gr.Error("Knapsack is not available. Cannot use Knapsack Beam Search.")
decoder = KnapsackBeamSearchDecoder(model=INSTANOVO, knapsack=KNAPSACK)
num_beams = 5 # Default beam size for knapsack
use_knapsack = True
else:
raise ValueError(f"Unknown transformer decoder selection: {selection}")
logger.info(f"Using Transformer decoder: {type(decoder).__name__} (Num beams: {num_beams}, Use Knapsack: {use_knapsack})")
return decoder, num_beams, use_knapsack
def run_transformer_prediction(dl, config, transformer_decoder_selection):
"""Runs prediction using only the transformer model."""
global RESIDUE_SET
if RESIDUE_SET is None:
raise gr.Error("ResidueSet not loaded.")
decoder, num_beams, use_knapsack = _get_transformer_decoder(transformer_decoder_selection, config)
results_list: list[ScoredSequence | list] = []
start_time = time.time()
for i, batch in enumerate(dl):
spectra, precursors, spectra_mask, _, _ = batch
spectra = spectra.to(DEVICE)
precursors = precursors.to(DEVICE)
spectra_mask = spectra_mask.to(DEVICE)
with torch.no_grad(), torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16):
batch_predictions = decoder.decode(
spectra=spectra,
precursors=precursors,
beam_size=num_beams,
max_length=config.max_length,
mass_tolerance=config.get("filter_precursor_ppm", 20) * 1e-6,
max_isotope=config.isotope_error_range[1] if config.isotope_error_range else 1,
return_beam=False, # Only top result
)
results_list.extend(batch_predictions)
if (i + 1) % 10 == 0 or (i + 1) == len(dl):
logger.info(f"Transformer prediction: Processed batch {i+1}/{len(dl)}")
end_time = time.time()
logger.info(f"Transformer prediction finished in {end_time - start_time:.2f} seconds.")
return results_list
def run_diffusion_prediction(dl, config):
"""Runs prediction using only the diffusion model."""
global INSTANOVOPLUS, RESIDUE_SET
if INSTANOVOPLUS is None or RESIDUE_SET is None:
raise gr.Error("InstaNovo+ Diffusion model not loaded.")
diffusion_decoder = DiffusionDecoder(model=INSTANOVOPLUS)
logger.info(f"Using decoder: {type(diffusion_decoder).__name__}")
results_sequences = []
results_log_probs = []
start_time = time.time()
# Re-create dataloader iterator to get precursor info easily later
all_batches = list(dl)
for i, batch in enumerate(all_batches):
spectra, precursors, spectra_mask, _, _ = batch
spectra = spectra.to(DEVICE)
precursors = precursors.to(DEVICE)
spectra_mask = spectra_mask.to(DEVICE)
with torch.no_grad(), torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16):
batch_sequences, batch_log_probs = diffusion_decoder.decode(
spectra=spectra,
spectra_padding_mask=spectra_mask,
precursors=precursors,
initial_sequence=None,
)
results_sequences.extend(batch_sequences)
results_log_probs.extend(batch_log_probs)
if (i + 1) % 10 == 0 or (i + 1) == len(all_batches):
logger.info(f"Diffusion prediction: Processed batch {i+1}/{len(all_batches)}")
end_time = time.time()
logger.info(f"Diffusion prediction finished in {end_time - start_time:.2f} seconds.")
scored_results = []
metrics_calc = Metrics(RESIDUE_SET, config.isotope_error_range)
all_precursors = torch.cat([b[1] for b in all_batches], dim=0) # b[1] is precursors
for idx, (seq, logp) in enumerate(zip(results_sequences, results_log_probs)):
prec_mz = all_precursors[idx, 1].item()
prec_ch = int(all_precursors[idx, 2].item())
try:
_, delta_mass_list = metrics_calc.matches_precursor(seq, prec_mz, prec_ch)
min_abs_ppm = min(abs(p) for p in delta_mass_list) if delta_mass_list else float("nan")
except Exception as e:
logger.info(f"Warning: Could not calculate delta mass for diffusion prediction {idx}: {e}")
min_abs_ppm = float("nan")
scored_results.append(
ScoredSequence(sequence=seq, mass_error=min_abs_ppm, sequence_log_probability=logp, token_log_probabilities=[])
)
return scored_results
def run_refinement_prediction(dl, config, transformer_decoder_selection):
"""Runs transformer prediction followed by diffusion refinement."""
global INSTANOVO, INSTANOVOPLUS, RESIDUE_SET, INSTANOVOPLUS_CONFIG
if INSTANOVO is None or INSTANOVOPLUS is None or RESIDUE_SET is None or INSTANOVOPLUS_CONFIG is None:
missing = [m for m, v in [("Transformer", INSTANOVO), ("Diffusion", INSTANOVOPLUS)] if v is None]
raise gr.Error(f"Cannot run refinement: {', '.join(missing)} model not loaded.")
# 1. Run Transformer Prediction (using selected decoder)
logger.info(f"Running Transformer prediction ({transformer_decoder_selection}) for refinement...")
transformer_decoder, num_beams, _ = _get_transformer_decoder(transformer_decoder_selection, config) # Get selected decoder
transformer_results_list: list[ScoredSequence | list] = []
all_batches = list(dl) # Store batches
start_time_transformer = time.time()
for i, batch in enumerate(all_batches):
spectra, precursors, spectra_mask, _, _ = batch
spectra = spectra.to(DEVICE)
precursors = precursors.to(DEVICE)
spectra_mask = spectra_mask.to(DEVICE)
with torch.no_grad(), torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16):
batch_predictions = transformer_decoder.decode(
spectra=spectra,
precursors=precursors,
beam_size=num_beams, # Use selected beam size
max_length=config.max_length,
mass_tolerance=config.get("filter_precursor_ppm", 20) * 1e-6,
max_isotope=config.isotope_error_range[1] if config.isotope_error_range else 1,
return_beam=False, # Only top result needed for refinement
)
transformer_results_list.extend(batch_predictions)
if (i + 1) % 10 == 0 or (i + 1) == len(all_batches):
logger.info(f"Refinement (Transformer): Processed batch {i+1}/{len(all_batches)}")
logger.info(f"Transformer prediction for refinement finished in {time.time() - start_time_transformer:.2f} seconds.")
# 2. Prepare Transformer Predictions as Initial Sequences for Diffusion
logger.info("Encoding transformer predictions for diffusion input...")
encoded_transformer_preds = []
max_len_diffusion = INSTANOVOPLUS_CONFIG.get("max_length", 40)
for res in transformer_results_list:
if isinstance(res, ScoredSequence) and res.sequence:
# Encode sequence *without* EOS for diffusion input.
encoded = RESIDUE_SET.encode(res.sequence, add_eos=False, return_tensor='pt')
else:
# If transformer failed, provide a dummy PAD sequence
encoded = torch.full((max_len_diffusion,), RESIDUE_SET.PAD_INDEX, dtype=torch.long)
# Pad or truncate to the diffusion model's max length
current_len = encoded.shape[0]
if current_len > max_len_diffusion:
logger.warning(f"Transformer prediction exceeded diffusion max length ({max_len_diffusion}). Truncating.")
encoded = encoded[:max_len_diffusion]
elif current_len < max_len_diffusion:
padding = torch.full((max_len_diffusion - current_len,), RESIDUE_SET.PAD_INDEX, dtype=torch.long)
encoded = torch.cat((encoded, padding))
encoded_transformer_preds.append(encoded)
if not encoded_transformer_preds:
raise gr.Error("Transformer prediction yielded no results to refine.")
encoded_transformer_preds_tensor = torch.stack(encoded_transformer_preds).to(DEVICE)
logger.info(f"Encoded {encoded_transformer_preds_tensor.shape[0]} sequences for diffusion.")
# 3. Run Diffusion Refinement
logger.info("Running Diffusion refinement...")
diffusion_decoder = DiffusionDecoder(model=INSTANOVOPLUS)
refined_sequences = []
refined_log_probs = []
start_time_diffusion = time.time()
current_idx = 0
for i, batch in enumerate(all_batches):
spectra, precursors, spectra_mask, _, _ = batch
spectra = spectra.to(DEVICE)
precursors = precursors.to(DEVICE)
spectra_mask = spectra_mask.to(DEVICE)
batch_size = spectra.shape[0]
initial_sequences_batch = encoded_transformer_preds_tensor[current_idx : current_idx + batch_size]
current_idx += batch_size
if initial_sequences_batch.shape[0] != batch_size:
logger.error(f"Batch size mismatch during refinement: expected {batch_size}, got {initial_sequences_batch.shape[0]}")
continue # Skip batch?
with torch.no_grad(), torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16):
batch_refined_seqs, batch_refined_logp = diffusion_decoder.decode(
spectra=spectra,
spectra_padding_mask=spectra_mask,
precursors=precursors,
initial_sequence=initial_sequences_batch,
start_step=DIFFUSION_START_STEP,
)
refined_sequences.extend(batch_refined_seqs)
refined_log_probs.extend(batch_refined_logp)
if (i + 1) % 10 == 0 or (i + 1) == len(all_batches):
logger.info(f"Refinement (Diffusion): Processed batch {i+1}/{len(all_batches)}")
logger.info(f"Diffusion refinement finished in {time.time() - start_time_diffusion:.2f} seconds.")
# 4. Combine and Format Results
all_precursors = torch.cat([b[1] for b in all_batches], dim=0) # b[1] is precursors
metrics_calc = Metrics(RESIDUE_SET, config.isotope_error_range)
combined_results = []
for idx, (transformer_res, refined_seq, refined_logp) in enumerate(zip(transformer_results_list, refined_sequences, refined_log_probs)):
prec_mz = all_precursors[idx, 1].item()
prec_ch = int(all_precursors[idx, 2].item())
try:
_, delta_mass_list = metrics_calc.matches_precursor(refined_seq, prec_mz, prec_ch)
min_abs_ppm = min(abs(p) for p in delta_mass_list) if delta_mass_list else float("nan")
except Exception as e:
logger.info(f"Warning: Could not calculate delta mass for refined prediction {idx}: {e}")
min_abs_ppm = float("nan")
combined_data = {
"transformer_prediction": "".join(transformer_res.sequence) if isinstance(transformer_res, ScoredSequence) else "",
"transformer_log_probability": transformer_res.sequence_log_probability if isinstance(transformer_res, ScoredSequence) else float('-inf'),
"refined_prediction": "".join(refined_seq),
"refined_log_probability": refined_logp,
"refined_delta_mass_ppm": min_abs_ppm,
}
combined_results.append(combined_data)
return combined_results
@spaces.GPU
def predict_peptides(input_file, mode_selection, transformer_decoder_selection):
"""
Main function to load data, select mode, run prediction, and return results.
"""
# Ensure models are loaded
if INSTANOVO is None or RESIDUE_SET is None:
load_models_and_knapsack() # Try reload
if INSTANOVO is None:
raise gr.Error("InstaNovo Transformer model failed to load. Cannot perform prediction.")
if ("refinement" in mode_selection or "InstaNovo+" in mode_selection) and INSTANOVOPLUS is None:
load_models_and_knapsack() # Try reload diffusion
if INSTANOVOPLUS is None:
raise gr.Error("InstaNovo+ Diffusion model failed to load. Cannot perform Refinement or InstaNovo+ Only prediction.")
if "Knapsack" in transformer_decoder_selection and KNAPSACK is None:
load_models_and_knapsack() # Try reload knapsack
if KNAPSACK is None:
raise gr.Error("Knapsack failed to load. Cannot use Knapsack Beam Search.")
if input_file is None:
raise gr.Error("Please upload a mass spectrometry file.")
input_path = input_file.name
logger.info("--- New Prediction Request ---")
logger.info(f"Input File: {input_path}")
logger.info(f"Selected Mode: {mode_selection}")
if "Refinement" in mode_selection or "InstaNovo Only" in mode_selection:
logger.info(f"Selected Transformer Decoder: {transformer_decoder_selection}")
# Create temp output file
gradio_tmp_dir = os.environ.get("GRADIO_TEMP_DIR", "/tmp")
try:
with tempfile.NamedTemporaryFile(dir=gradio_tmp_dir, delete=False, suffix=".csv") as temp_out:
output_csv_path = temp_out.name
logger.info(f"Temporary output path: {output_csv_path}")
except Exception as e:
logger.error(f"Failed to create temporary file in {gradio_tmp_dir}: {e}")
raise gr.Error(f"Failed to create temporary output file: {e}")
try:
config = create_inference_config(input_path, output_csv_path)
logger.info("Loading spectrum data...")
try:
# Load data eagerly
sdf = SpectrumDataFrame.load(
config.data_path, lazy=False, is_annotated=False,
column_mapping=config.get("column_map", None), shuffle=False, verbose=True,
)
original_size = len(sdf)
max_charge = config.get("max_charge", 10)
if "precursor_charge" in sdf.df.columns:
sdf.filter_rows(
lambda row: ("precursor_charge" in row and row["precursor_charge"] is not None and 0 < row["precursor_charge"] <= max_charge)
)
if len(sdf) < original_size:
logger.info(f"Warning: Filtered {original_size - len(sdf)} spectra with invalid or out-of-range charge (<=0 or >{max_charge}).")
else:
logger.warning("Column 'precursor_charge' not found. Cannot filter by charge.")
if len(sdf) == 0:
raise gr.Error("No valid spectra found in the uploaded file after filtering.")
logger.info(f"Data loaded: {len(sdf)} spectra.")
index_cols_present = [col for col in config.index_columns if col in sdf.df.columns]
base_df_pd = sdf.df.select(index_cols_present).to_pandas()
except Exception as e:
logger.error(f"Error loading data: {e}", exc_info=True)
raise gr.Error(f"Failed to load or process the spectrum file. Error: {e}")
if RESIDUE_SET is None: raise gr.Error("Residue set not loaded.") # Should not happen if model loaded
# --- Prepare DataLoader ---
# Use reverse_peptide=True for Transformer steps, False for Diffusion-only
reverse_for_transformer = "InstaNovo+ Only" not in mode_selection
ds = SpectrumDataset(
sdf, RESIDUE_SET,
INSTANOVO_CONFIG.get("n_peaks", 200) if INSTANOVO_CONFIG else 200,
return_str=True, annotated=False,
pad_spectrum_max_length=config.get("compile_model", False) or config.get("use_flash_attention", False),
bin_spectra=config.get("conv_peak_encoder", False),
peptide_pad_length=config.get("max_length", 40) if config.get("compile_model", False) else 0,
reverse_peptide=reverse_for_transformer, # Key change based on mode
diffusion="InstaNovo+ Only" in mode_selection # Signal if input is for diffusion
)
dl = DataLoader(ds, batch_size=config.batch_size, num_workers=0, shuffle=False, collate_fn=collate_batch)
# --- Run Prediction ---
results_data = None
output_headers = index_cols_present[:]
if "InstaNovo Only" in mode_selection:
output_headers.extend(["prediction", "log_probability", "delta_mass_ppm", "token_log_probabilities"])
transformer_results = run_transformer_prediction(dl, config, transformer_decoder_selection)
results_data = []
metrics_calc = Metrics(RESIDUE_SET, config.isotope_error_range)
for i, res in enumerate(transformer_results):
row_data = {}
if isinstance(res, ScoredSequence) and res.sequence:
row_data["prediction"] = "".join(res.sequence)
row_data["log_probability"] = f"{res.sequence_log_probability:.4f}"
row_data["token_log_probabilities"] = ", ".join(f"{p:.4f}" for p in res.token_log_probabilities)
try:
prec_mz = base_df_pd.loc[i, "precursor_mz"]
prec_ch = base_df_pd.loc[i, "precursor_charge"]
_, delta_mass_list = metrics_calc.matches_precursor(res.sequence, prec_mz, prec_ch)
min_abs_ppm = min(abs(p) for p in delta_mass_list) if delta_mass_list else float("nan")
row_data["delta_mass_ppm"] = f"{min_abs_ppm:.2f}"
except Exception as e:
logger.warning(f"Could not calculate delta mass for Tx prediction {i}: {e}")
row_data["delta_mass_ppm"] = "N/A"
else:
row_data.update({k: "N/A" for k in ["prediction", "log_probability", "delta_mass_ppm", "token_log_probabilities"]})
row_data["prediction"] = "" # Ensure empty string for failed preds
row_data["token_log_probabilities"] = ""
results_data.append(row_data)
elif "InstaNovo+ Only" in mode_selection:
output_headers.extend(["prediction", "log_probability", "delta_mass_ppm"])
diffusion_results = run_diffusion_prediction(dl, config)
results_data = []
for res in diffusion_results:
row_data = {}
if isinstance(res, ScoredSequence) and res.sequence:
row_data["prediction"] = "".join(res.sequence)
row_data["log_probability"] = f"{res.sequence_log_probability:.4f}" # Avg loss
row_data["delta_mass_ppm"] = f"{res.mass_error:.2f}" if not np.isnan(res.mass_error) else "N/A" # ppm
else:
row_data.update({k: "N/A" for k in ["prediction", "log_probability", "delta_mass_ppm"]})
row_data["prediction"] = ""
results_data.append(row_data)
elif "Refinement" in mode_selection:
output_headers.extend([
"transformer_prediction", "transformer_log_probability",
"refined_prediction", "refined_log_probability", "refined_delta_mass_ppm"
])
# Pass the selected transformer decoder to the refinement function
results_data = run_refinement_prediction(dl, config, transformer_decoder_selection)
for row in results_data:
# Format numbers after getting the list of dicts
row["transformer_log_probability"] = f"{row['transformer_log_probability']:.4f}" if isinstance(row['transformer_log_probability'], (float, int)) else "N/A"
row["refined_log_probability"] = f"{row['refined_log_probability']:.4f}" if isinstance(row['refined_log_probability'], (float, int)) else "N/A"
row["refined_delta_mass_ppm"] = f"{row['refined_delta_mass_ppm']:.2f}" if isinstance(row['refined_delta_mass_ppm'], (float, int)) and not np.isnan(row['refined_delta_mass_ppm']) else "N/A"
else:
raise ValueError(f"Unknown mode selection: {mode_selection}")
# --- Combine, Save, Return ---
logger.info("Combining results...")
if results_data is None: raise gr.Error("Prediction did not produce results.")
results_df = pl.DataFrame(results_data)
# Ensure base_df_pd has unique index if using join, or just concat horizontally if order is guaranteed
base_df_pl = pl.from_pandas(base_df_pd.reset_index(drop=True))
# Simple horizontal concat assuming order is preserved by dataloader (shuffle=False)
if len(base_df_pl) == len(results_df):
final_df = pl.concat([base_df_pl, results_df], how="horizontal")
else:
logger.error(f"Length mismatch between base data ({len(base_df_pl)}) and results ({len(results_df)}). Cannot reliably combine.")
# Fallback or error? Let's just use results for now, but log error.
final_df = results_df # Display only results in case of mismatch
logger.info(f"Saving full results to {output_csv_path}...")
final_df.write_csv(output_csv_path)
logger.info("Save complete.")
# Select display columns - make sure they exist in final_df
display_cols_final = [col for col in output_headers if col in final_df.columns]
display_df = final_df.select(display_cols_final)
logger.info("--- Prediction Request Complete ---")
return display_df.to_pandas(), output_csv_path
except Exception as e:
logger.error(f"An error occurred during prediction: {e}", exc_info=True)
if 'output_csv_path' in locals() and os.path.exists(output_csv_path):
try:
os.remove(output_csv_path)
logger.info(f"Removed temporary file {output_csv_path}")
except OSError:
logger.error(f"Failed to remove temporary file {output_csv_path}")
raise gr.Error(f"Prediction failed: {e}")
# --- Gradio Interface ---
css = """
.gradio-container { font-family: sans-serif; }
.gr-button { color: white; border-color: black; background: black; }
footer { display: none !important; }
.logo-container img { margin-bottom: 1rem; }
.feedback { font-size: 0.9rem; color: gray; }
"""
with gr.Blocks(
css=css, theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")
) as demo:
gr.Markdown(
"""
<div style="text-align: center;" class="logo-container">
<img src='/gradio_api/file=assets/instanovo.svg' alt="InstaNovo Logo" width="300" style="display: block; margin: 0 auto;">
</div>
""",
elem_classes="logo-container",
)
gr.Markdown(
f"""
# π _De Novo_ Peptide Sequencing with InstaNovo
Upload your mass spectrometry data file (.mgf, .mzml, or .mzxml) and get peptide sequence predictions.
Choose your prediction method and decoding options.
**Note:** The InstaNovo+ model `{DIFFUSION_MODEL_ID}` is an alpha release.
"""
)
with gr.Row():
with gr.Column(scale=1):
input_file = gr.File(
label="Upload Mass Spectrometry File (.mgf, .mzml, .mzxml)",
file_types=[".mgf", ".mzml", ".mzxml"],
scale=1
)
mode_selection = gr.Radio(
[
"InstaNovo with InstaNovo+ refinement (Default, Recommended)",
"InstaNovo Only (Transformer)",
"InstaNovo+ Only (Diffusion, Alpha release)",
],
label="Prediction Mode",
value="InstaNovo with InstaNovo+ refinement (Default, Recommended)",
scale=1
)
# Transformer decoder selection - visible for relevant modes
transformer_decoder_selection = gr.Radio(
[
"Greedy Search (Fast)",
"Knapsack Beam Search (Accurate, Slower)"
],
label="Transformer Decoding Method",
value="Greedy Search (Fast)",
visible=True, # Start visible as default mode uses it
interactive=True,
scale=1
)
submit_btn = gr.Button("Predict Sequences", variant="primary")
# --- Control Visibility & Choices ---
def update_transformer_options(mode):
# Show decoder selection if mode uses the transformer
show_decoder = "InstaNovo+ Only" not in mode
choices = ["Greedy Search (Fast)", "Knapsack Beam Search (Accurate, Slower)"]
current_value = "Greedy Search (Fast)" # Default reset value
return gr.update(visible=show_decoder, choices=choices, value=current_value)
mode_selection.change(
fn=update_transformer_options,
inputs=mode_selection,
outputs=transformer_decoder_selection,
)
with gr.Column(scale=2):
output_df = gr.DataFrame(
label="Prediction Results Preview",
headers=["scan_number", "prediction", "log_probability", "delta_mass_ppm"]
)
output_file = gr.File(label="Download Full Results (CSV)")
submit_btn.click(
predict_peptides,
inputs=[input_file, mode_selection, transformer_decoder_selection],
outputs=[output_df, output_file],
)
gr.Examples(
[
["assets/sample_spectra.mgf", "InstaNovo with InstaNovo+ refinement (Default, Recommended)", "Greedy Search (Fast)"],
["assets/sample_spectra.mgf", "InstaNovo with InstaNovo+ refinement (Default, Recommended)", "Knapsack Beam Search (Accurate, Slower)"],
["assets/sample_spectra.mgf", "InstaNovo Only (Transformer)", "Greedy Search (Fast)"],
["assets/sample_spectra.mgf", "InstaNovo Only (Transformer)", "Knapsack Beam Search (Accurate, Slower)"],
["assets/sample_spectra.mgf", "InstaNovo+ Only (Diffusion, Alpha release)", ""],
],
inputs=[input_file, mode_selection, transformer_decoder_selection],
# outputs=[output_df, output_file],
cache_examples=False,
label="Example Usage:",
)
gr.Markdown(
f"""
**Notes:**
* Predictions use `{TRANSFORMER_MODEL_ID}` (Transformer) and `{DIFFUSION_MODEL_ID}` (Diffusion, Alpha release).
* **Refinement Mode:** Runs initial prediction with the selected Transformer method (Greedy/Knapsack), then refines using InstaNovo+.
* **InstaNovo Only Mode:** Uses only the Transformer with the selected decoding method.
* **InstaNovo+ Only Mode:** Predicts directly using the Diffusion model (alpha version).
* `delta_mass_ppm` shows the lowest absolute precursor mass error (ppm) across isotopes 0-1 for the final sequence.
* Knapsack Beam Search requires a pre-computed knapsack file. If unavailable, the option will be disabled.
* Check logs for progress, especially for large files or slower methods.
""",
elem_classes="feedback"
)
with gr.Accordion("Application Logs", open=True):
log_display = Log(log_file, dark=True, height=300)
gr.Markdown(
value="""
If you use InstaNovo in your research, please cite:
```bibtex
@article{eloff_kalogeropoulos_2025_instanovo,
title = {InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale proteomics experiments},
author = {Kevin Eloff and Konstantinos Kalogeropoulos and Amandla Mabona and Oliver Morell and Rachel Catzel and
Esperanza Rivera-de-Torre and Jakob Berg Jespersen and Wesley Williams and Sam P. B. van Beljouw and
Marcin J. Skwark and Andreas Hougaard Laustsen and Stan J. J. Brouns and Anne Ljungars and Erwin M.
Schoof and Jeroen Van Goey and Ulrich auf dem Keller and Karim Beguir and Nicolas Lopez Carranza and
Timothy P. Jenkins},
year = 2025,
month = {Mar},
day = 31,
journal = {Nature Machine Intelligence},
doi = {10.1038/s42256-025-01019-5},
url = {https://www.nature.com/articles/s42256-025-01019-5}
}
""",
show_copy_button=True,
label="If you use InstaNovo in your research, please cite:"
)
# --- Launch the App ---
if __name__ == "__main__":
# https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance
demo.queue(default_concurrency_limit=5)
# Set share=True for temporary public link if running locally
# Set server_name="0.0.0.0" to allow access from network if needed
# demo.launch(server_name="0.0.0.0", server_port=7860)
# For Hugging Face Spaces, just demo.launch() is usually sufficient
demo.launch(debug=True, show_error=True)
# demo.launch(share=True) # For local testing with public URL
|