Spaces:
Running
on
Zero
Running
on
Zero
feat: adding support for IN+
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ from gradio_log import Log
|
|
14 |
# --- InstaNovo Imports ---
|
15 |
try:
|
16 |
from instanovo.transformer.model import InstaNovo
|
|
|
17 |
from instanovo.utils import SpectrumDataFrame, ResidueSet, Metrics
|
18 |
from instanovo.transformer.dataset import SpectrumDataset, collate_batch
|
19 |
from instanovo.inference import (
|
@@ -23,29 +24,38 @@ try:
|
|
23 |
ScoredSequence,
|
24 |
Decoder,
|
25 |
)
|
26 |
-
from instanovo.
|
|
|
|
|
|
|
|
|
|
|
27 |
from torch.utils.data import DataLoader
|
|
|
28 |
except ImportError as e:
|
29 |
raise ImportError(f"Failed to import InstaNovo components: {e}")
|
30 |
|
31 |
# --- Configuration ---
|
32 |
-
|
|
|
33 |
KNAPSACK_DIR = Path("./knapsack_cache")
|
34 |
DEFAULT_CONFIG_PATH = Path(
|
35 |
"./configs/inference/default.yaml"
|
36 |
-
)
|
37 |
|
38 |
# Determine device
|
39 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
-
FP16 = DEVICE == "cuda"
|
41 |
|
42 |
-
# --- Global Variables (Load
|
43 |
MODEL: InstaNovo | None = None
|
44 |
-
KNAPSACK: Knapsack | None = None
|
45 |
MODEL_CONFIG: DictConfig | None = None
|
|
|
|
|
|
|
46 |
RESIDUE_SET: ResidueSet | None = None
|
47 |
|
48 |
-
# --- Assets ---
|
49 |
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
|
50 |
|
51 |
# Create gradio temporary directory
|
@@ -57,141 +67,165 @@ if not temp_dir.exists():
|
|
57 |
log_file = "/tmp/instanovo_gradio_log.txt"
|
58 |
Path(log_file).touch()
|
59 |
|
60 |
-
logger = logging.getLogger("
|
61 |
logger.setLevel(logging.INFO)
|
62 |
-
|
63 |
-
file_handler.
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
def load_model_and_knapsack():
|
70 |
-
"""Loads the InstaNovo model and generates/loads the knapsack."""
|
71 |
-
global MODEL, KNAPSACK, MODEL_CONFIG, RESIDUE_SET
|
72 |
-
if MODEL is not None:
|
73 |
-
logger.info("Model already loaded.")
|
74 |
-
return
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# --- Knapsack Handling ---
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
if
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
gr.Warning("Failed to generate Knapsack. Knapsack Beam Search will not be available. {e}")
|
145 |
-
KNAPSACK = None # Ensure it's None if generation failed
|
146 |
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
|
151 |
def create_inference_config(
|
152 |
input_path: str,
|
153 |
output_path: str,
|
154 |
-
decoding_method: str,
|
155 |
) -> DictConfig:
|
156 |
-
"""Creates
|
157 |
-
# Load default config if available, otherwise create from scratch
|
158 |
if DEFAULT_CONFIG_PATH.exists():
|
159 |
base_cfg = OmegaConf.load(DEFAULT_CONFIG_PATH)
|
|
|
160 |
else:
|
161 |
logger.info(f"Warning: Default config not found at {DEFAULT_CONFIG_PATH}. Using minimal config.")
|
162 |
-
# Create a minimal config if default is missing
|
163 |
base_cfg = OmegaConf.create({
|
164 |
-
"data_path": None,
|
165 |
-
"
|
166 |
-
"
|
167 |
-
"
|
168 |
-
"
|
169 |
-
"
|
170 |
-
"
|
171 |
-
"
|
172 |
-
"
|
173 |
-
"
|
174 |
-
"
|
175 |
-
"use_knapsack": False,
|
176 |
-
"save_beams": False,
|
177 |
-
"batch_size": 64, # Adjust as needed
|
178 |
-
"device": DEVICE,
|
179 |
-
"fp16": FP16,
|
180 |
-
"log_interval": 500, # Less relevant for Gradio app
|
181 |
-
"use_basic_logging": True,
|
182 |
-
"filter_precursor_ppm": 20,
|
183 |
-
"filter_confidence": 1e-4,
|
184 |
-
"filter_fdr_threshold": 0.05,
|
185 |
-
"residue_remapping": { # Add default mappings
|
186 |
"M(ox)": "M[UNIMOD:35]", "M(+15.99)": "M[UNIMOD:35]",
|
187 |
"S(p)": "S[UNIMOD:21]", "T(p)": "T[UNIMOD:21]", "Y(p)": "Y[UNIMOD:21]",
|
188 |
"S(+79.97)": "S[UNIMOD:21]", "T(+79.97)": "T[UNIMOD:21]", "Y(+79.97)": "Y[UNIMOD:21]",
|
189 |
"Q(+0.98)": "Q[UNIMOD:7]", "N(+0.98)": "N[UNIMOD:7]",
|
190 |
"Q(+.98)": "Q[UNIMOD:7]", "N(+.98)": "N[UNIMOD:7]",
|
191 |
-
"C(+57.02)": "C[UNIMOD:4]",
|
192 |
-
"(+
|
193 |
},
|
194 |
-
"column_map": {
|
195 |
"Modified sequence": "modified_sequence", "MS/MS m/z": "precursor_mz",
|
196 |
"Mass": "precursor_mass", "Charge": "precursor_charge",
|
197 |
"Mass values": "mz_array", "Mass spectrum": "mz_array",
|
@@ -200,256 +234,457 @@ def create_inference_config(
|
|
200 |
},
|
201 |
"index_columns": [
|
202 |
"scan_number", "precursor_mz", "precursor_charge",
|
|
|
203 |
],
|
204 |
-
# Add other defaults if needed based on errors
|
205 |
})
|
206 |
|
207 |
-
# Override specific parameters
|
208 |
cfg_overrides = {
|
209 |
-
"data_path": input_path,
|
210 |
-
"
|
211 |
-
"device": DEVICE,
|
212 |
-
"fp16": FP16,
|
213 |
-
"denovo": True,
|
214 |
-
"refine": False,
|
215 |
}
|
|
|
|
|
|
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
if KNAPSACK is None:
|
222 |
-
raise gr.Error(
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
cfg_overrides["use_knapsack"] = True
|
227 |
-
cfg_overrides["knapsack_path"] = str(KNAPSACK_DIR)
|
228 |
else:
|
229 |
-
raise ValueError(f"Unknown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
# Merge base config with overrides
|
232 |
-
final_cfg = OmegaConf.merge(base_cfg, cfg_overrides)
|
233 |
-
return final_cfg
|
234 |
|
235 |
@spaces.GPU
|
236 |
-
def predict_peptides(input_file,
|
237 |
"""
|
238 |
-
Main function to load data, run prediction, and return results.
|
239 |
"""
|
240 |
-
|
241 |
-
|
|
|
242 |
if MODEL is None:
|
243 |
-
raise gr.Error("InstaNovo model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
if input_file is None:
|
246 |
raise gr.Error("Please upload a mass spectrometry file.")
|
247 |
|
248 |
-
input_path = input_file.name
|
249 |
-
logger.info(f"
|
250 |
-
logger.info(f"
|
|
|
|
|
|
|
251 |
|
252 |
-
# Create
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
try:
|
257 |
-
|
258 |
-
config = create_inference_config(input_path, output_csv_path, decoding_method)
|
259 |
-
logger.info(f"Inference Config:\n{OmegaConf.to_yaml(config)}")
|
260 |
|
261 |
-
# 2. Load Data using SpectrumDataFrame
|
262 |
logger.info("Loading spectrum data...")
|
263 |
try:
|
|
|
264 |
sdf = SpectrumDataFrame.load(
|
265 |
-
config.data_path,
|
266 |
-
|
267 |
-
is_annotated=False, # De novo mode
|
268 |
-
column_mapping=config.get("column_map", None),
|
269 |
-
shuffle=False,
|
270 |
-
verbose=True, # Print loading logs
|
271 |
)
|
272 |
-
# Apply charge filter like in CLI
|
273 |
original_size = len(sdf)
|
274 |
max_charge = config.get("max_charge", 10)
|
275 |
-
sdf.
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
281 |
|
282 |
if len(sdf) == 0:
|
283 |
raise gr.Error("No valid spectra found in the uploaded file after filtering.")
|
284 |
logger.info(f"Data loaded: {len(sdf)} spectra.")
|
|
|
|
|
|
|
285 |
except Exception as e:
|
286 |
-
logger.
|
287 |
raise gr.Error(f"Failed to load or process the spectrum file. Error: {e}")
|
288 |
|
289 |
-
|
|
|
|
|
|
|
|
|
290 |
ds = SpectrumDataset(
|
291 |
-
sdf,
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
annotated=False,
|
296 |
-
pad_spectrum_max_length=config.get("compile_model", False)
|
297 |
-
or config.get("use_flash_attention", False),
|
298 |
bin_spectra=config.get("conv_peak_encoder", False),
|
|
|
|
|
|
|
299 |
)
|
300 |
-
dl = DataLoader(
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
-
# 4. Select Decoder
|
309 |
-
logger.info("Initializing decoder...")
|
310 |
-
decoder: Decoder
|
311 |
-
if config.use_knapsack:
|
312 |
-
if KNAPSACK is None:
|
313 |
-
# This check should ideally be earlier, but double-check
|
314 |
-
raise gr.Error(
|
315 |
-
"Knapsack is required for Knapsack Beam Search but is not available."
|
316 |
-
)
|
317 |
-
# KnapsackBeamSearchDecoder doesn't directly load from path in this version?
|
318 |
-
# We load Knapsack globally, so just pass it.
|
319 |
-
# If it needed path: decoder = KnapsackBeamSearchDecoder.from_file(model=MODEL, path=config.knapsack_path)
|
320 |
-
decoder = KnapsackBeamSearchDecoder(model=MODEL, knapsack=KNAPSACK)
|
321 |
-
elif config.num_beams > 1:
|
322 |
-
# BeamSearchDecoder is available but not explicitly requested, use Greedy for num_beams=1
|
323 |
-
logger.info(f"Warning: num_beams={config.num_beams} > 1 but only Greedy and Knapsack Beam Search are implemented in this app. Defaulting to Greedy.")
|
324 |
-
decoder = GreedyDecoder(model=MODEL, mass_scale=MASS_SCALE)
|
325 |
else:
|
326 |
-
|
327 |
-
model=MODEL,
|
328 |
-
mass_scale=MASS_SCALE,
|
329 |
-
# Add suppression options if needed from config
|
330 |
-
suppressed_residues=config.get("suppressed_residues", None),
|
331 |
-
disable_terminal_residues_anywhere=config.get("disable_terminal_residues_anywhere", True),
|
332 |
-
)
|
333 |
-
logger.info(f"Using decoder: {type(decoder).__name__}")
|
334 |
-
|
335 |
-
# 5. Run Prediction Loop (Adapted from instanovo/transformer/predict.py)
|
336 |
-
logger.info("Starting prediction...")
|
337 |
-
start_time = time.time()
|
338 |
-
results_list: list[
|
339 |
-
ScoredSequence | list
|
340 |
-
] = [] # Store ScoredSequence or empty list
|
341 |
-
|
342 |
-
for i, batch in enumerate(dl):
|
343 |
-
spectra, precursors, spectra_mask, _, _ = (
|
344 |
-
batch # Ignore peptides/masks for de novo
|
345 |
-
)
|
346 |
-
spectra = spectra.to(DEVICE)
|
347 |
-
precursors = precursors.to(DEVICE)
|
348 |
-
spectra_mask = spectra_mask.to(DEVICE)
|
349 |
-
|
350 |
-
with (
|
351 |
-
torch.no_grad(),
|
352 |
-
torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16),
|
353 |
-
):
|
354 |
-
# Beam search decoder might return list[list[ScoredSequence]] if return_beam=True
|
355 |
-
# Greedy decoder returns list[ScoredSequence]
|
356 |
-
# KnapsackBeamSearchDecoder returns list[ScoredSequence] or list[list[ScoredSequence]]
|
357 |
-
batch_predictions = decoder.decode(
|
358 |
-
spectra=spectra,
|
359 |
-
precursors=precursors,
|
360 |
-
beam_size=config.num_beams,
|
361 |
-
max_length=config.max_length,
|
362 |
-
# Knapsack/Beam Search specific params if needed
|
363 |
-
mass_tolerance=config.get("filter_precursor_ppm", 20)
|
364 |
-
* 1e-6, # Convert ppm to relative
|
365 |
-
max_isotope=config.isotope_error_range[1]
|
366 |
-
if config.isotope_error_range
|
367 |
-
else 1,
|
368 |
-
return_beam=False, # Only get the top prediction for simplicity
|
369 |
-
)
|
370 |
-
results_list.extend(batch_predictions) # Should be list[ScoredSequence] or list[list]
|
371 |
-
logger.info(f"Processed batch {i+1}/{len(dl)}")
|
372 |
-
|
373 |
-
end_time = time.time()
|
374 |
-
logger.info(f"Prediction finished in {end_time - start_time:.2f} seconds.")
|
375 |
-
|
376 |
-
# 6. Format Results
|
377 |
-
logger.info("Formatting results...")
|
378 |
-
output_data = []
|
379 |
-
# Use sdf index columns + prediction results
|
380 |
-
index_cols = [col for col in config.index_columns if col in sdf.df.columns]
|
381 |
-
base_df_pd = sdf.df.select(index_cols).to_pandas() # Get base info
|
382 |
-
|
383 |
-
metrics_calc = Metrics(RESIDUE_SET, config.isotope_error_range)
|
384 |
-
|
385 |
-
for i, res in enumerate(results_list):
|
386 |
-
row_data = base_df_pd.iloc[i].to_dict() # Get corresponding input data
|
387 |
-
if isinstance(res, ScoredSequence) and res.sequence:
|
388 |
-
sequence_str = "".join(res.sequence)
|
389 |
-
row_data["prediction"] = sequence_str
|
390 |
-
row_data["log_probability"] = f"{res.sequence_log_probability:.4f}"
|
391 |
-
# Use metrics to calculate delta mass ppm for the top prediction
|
392 |
-
try:
|
393 |
-
_, delta_mass_list = metrics_calc.matches_precursor(
|
394 |
-
res.sequence,
|
395 |
-
row_data["precursor_mz"],
|
396 |
-
row_data["precursor_charge"],
|
397 |
-
)
|
398 |
-
# Find the smallest absolute ppm error across isotopes
|
399 |
-
min_abs_ppm = (
|
400 |
-
min(abs(p) for p in delta_mass_list)
|
401 |
-
if delta_mass_list
|
402 |
-
else float("nan")
|
403 |
-
)
|
404 |
-
row_data["delta_mass_ppm"] = f"{min_abs_ppm:.2f}"
|
405 |
-
except Exception as e:
|
406 |
-
logger.info(f"Warning: Could not calculate delta mass for prediction {i}: {e}")
|
407 |
-
row_data["delta_mass_ppm"] = "N/A"
|
408 |
|
409 |
-
else:
|
410 |
-
row_data["prediction"] = ""
|
411 |
-
row_data["log_probability"] = "N/A"
|
412 |
-
row_data["delta_mass_ppm"] = "N/A"
|
413 |
-
output_data.append(row_data)
|
414 |
-
|
415 |
-
output_df = pl.DataFrame(output_data)
|
416 |
-
|
417 |
-
# Ensure specific columns are present and ordered
|
418 |
-
display_cols = [
|
419 |
-
"scan_number",
|
420 |
-
"precursor_mz",
|
421 |
-
"precursor_charge",
|
422 |
-
"prediction",
|
423 |
-
"log_probability",
|
424 |
-
"delta_mass_ppm",
|
425 |
-
]
|
426 |
-
final_display_cols = []
|
427 |
-
for col in display_cols:
|
428 |
-
if col in output_df.columns:
|
429 |
-
final_display_cols.append(col)
|
430 |
-
else:
|
431 |
-
logger.info(f"Warning: Expected display column '{col}' not found in results.")
|
432 |
|
433 |
-
#
|
434 |
-
|
435 |
-
|
436 |
-
|
|
|
|
|
|
|
437 |
|
438 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
-
#
|
441 |
-
|
442 |
-
|
443 |
|
444 |
-
|
445 |
-
return
|
446 |
|
447 |
except Exception as e:
|
448 |
-
logger.
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
|
|
|
|
453 |
raise gr.Error(f"Prediction failed: {e}")
|
454 |
|
455 |
|
@@ -458,29 +693,29 @@ css = """
|
|
458 |
.gradio-container { font-family: sans-serif; }
|
459 |
.gr-button { color: white; border-color: black; background: black; }
|
460 |
footer { display: none !important; }
|
461 |
-
/* Optional: Add some margin below the logo */
|
462 |
.logo-container img { margin-bottom: 1rem; }
|
|
|
463 |
"""
|
464 |
|
465 |
with gr.Blocks(
|
466 |
css=css, theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")
|
467 |
) as demo:
|
468 |
-
# --- Logo Display ---
|
469 |
gr.Markdown(
|
470 |
"""
|
471 |
<div style="text-align: center;" class="logo-container">
|
472 |
<img src='/gradio_api/file=assets/instanovo.svg' alt="InstaNovo Logo" width="300" style="display: block; margin: 0 auto;">
|
473 |
</div>
|
474 |
""",
|
475 |
-
elem_classes="logo-container",
|
476 |
)
|
477 |
|
478 |
-
# --- App Content ---
|
479 |
gr.Markdown(
|
480 |
-
"""
|
481 |
-
# 🚀 _De Novo_ Peptide Sequencing with InstaNovo
|
482 |
-
Upload your mass spectrometry data file (.mgf, .mzml, or .mzxml) and get peptide sequence predictions
|
483 |
-
Choose
|
|
|
|
|
484 |
"""
|
485 |
)
|
486 |
with gr.Row():
|
@@ -489,73 +724,114 @@ with gr.Blocks(
|
|
489 |
label="Upload Mass Spectrometry File (.mgf, .mzml, .mzxml)",
|
490 |
file_types=[".mgf", ".mzml", ".mzxml"],
|
491 |
)
|
492 |
-
|
493 |
[
|
494 |
-
"
|
495 |
-
"
|
|
|
496 |
],
|
497 |
-
label="
|
498 |
-
value="
|
499 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
submit_btn = gr.Button("Predict Sequences", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
with gr.Column(scale=2):
|
502 |
output_df = gr.DataFrame(
|
503 |
-
label="Prediction Results",
|
504 |
-
headers=[
|
505 |
-
"scan_number",
|
506 |
-
"precursor_mz",
|
507 |
-
"precursor_charge",
|
508 |
-
"prediction",
|
509 |
-
"log_probability",
|
510 |
-
"delta_mass_ppm",
|
511 |
-
],
|
512 |
-
wrap=True,
|
513 |
)
|
514 |
output_file = gr.File(label="Download Full Results (CSV)")
|
515 |
|
516 |
submit_btn.click(
|
517 |
predict_peptides,
|
518 |
-
inputs=[input_file,
|
519 |
outputs=[output_df, output_file],
|
520 |
)
|
521 |
|
522 |
gr.Examples(
|
523 |
[
|
524 |
-
["assets/sample_spectra.mgf", "Greedy Search (Fast
|
525 |
-
[
|
526 |
-
|
527 |
-
|
528 |
-
],
|
529 |
],
|
530 |
-
inputs=[input_file,
|
531 |
-
outputs=[output_df, output_file],
|
532 |
-
|
533 |
-
|
534 |
-
label="Example Usage",
|
535 |
)
|
536 |
|
537 |
gr.Markdown(
|
538 |
-
"""
|
539 |
**Notes:**
|
540 |
-
* Predictions
|
541 |
-
*
|
542 |
-
*
|
543 |
-
*
|
544 |
-
|
|
|
|
|
|
|
|
|
545 |
)
|
546 |
|
547 |
-
|
548 |
-
with gr.Accordion("Application Logs", open=True):
|
549 |
log_display = Log(log_file, dark=True, height=300)
|
550 |
-
|
551 |
-
gr.
|
552 |
value="""
|
|
|
|
|
|
|
553 |
@article{eloff_kalogeropoulos_2025_instanovo,
|
554 |
title = {InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale proteomics experiments},
|
555 |
-
author = {Kevin Eloff and Konstantinos Kalogeropoulos and Amandla Mabona and Oliver Morell and Rachel Catzel and
|
556 |
-
Esperanza Rivera-de-Torre and Jakob Berg Jespersen and Wesley Williams and Sam P. B. van Beljouw and
|
557 |
-
Marcin J. Skwark and Andreas Hougaard Laustsen and Stan J. J. Brouns and Anne Ljungars and Erwin M.
|
558 |
-
Schoof and Jeroen Van Goey and Ulrich auf dem Keller and Karim Beguir and Nicolas Lopez Carranza and
|
559 |
Timothy P. Jenkins},
|
560 |
year = 2025,
|
561 |
month = {Mar},
|
@@ -566,8 +842,7 @@ with gr.Blocks(
|
|
566 |
}
|
567 |
""",
|
568 |
show_copy_button=True,
|
569 |
-
label="If you use InstaNovo in your research, please cite:"
|
570 |
-
interactive=False,
|
571 |
)
|
572 |
|
573 |
# --- Launch the App ---
|
@@ -576,4 +851,5 @@ if __name__ == "__main__":
|
|
576 |
# Set server_name="0.0.0.0" to allow access from network if needed
|
577 |
# demo.launch(server_name="0.0.0.0", server_port=7860)
|
578 |
# For Hugging Face Spaces, just demo.launch() is usually sufficient
|
579 |
-
demo.launch(
|
|
|
|
14 |
# --- InstaNovo Imports ---
|
15 |
try:
|
16 |
from instanovo.transformer.model import InstaNovo
|
17 |
+
from instanovo.diffusion.multinomial_diffusion import InstaNovoPlus
|
18 |
from instanovo.utils import SpectrumDataFrame, ResidueSet, Metrics
|
19 |
from instanovo.transformer.dataset import SpectrumDataset, collate_batch
|
20 |
from instanovo.inference import (
|
|
|
24 |
ScoredSequence,
|
25 |
Decoder,
|
26 |
)
|
27 |
+
from instanovo.inference.diffusion import DiffusionDecoder
|
28 |
+
from instanovo.constants import (
|
29 |
+
MASS_SCALE,
|
30 |
+
MAX_MASS,
|
31 |
+
DIFFUSION_START_STEP,
|
32 |
+
)
|
33 |
from torch.utils.data import DataLoader
|
34 |
+
import torch.nn.functional as F # For padding
|
35 |
except ImportError as e:
|
36 |
raise ImportError(f"Failed to import InstaNovo components: {e}")
|
37 |
|
38 |
# --- Configuration ---
|
39 |
+
TRANSFORMER_MODEL_ID = "instanovo-v1.1.0"
|
40 |
+
DIFFUSION_MODEL_ID = "instanovoplus-v1.1.0-alpha"
|
41 |
KNAPSACK_DIR = Path("./knapsack_cache")
|
42 |
DEFAULT_CONFIG_PATH = Path(
|
43 |
"./configs/inference/default.yaml"
|
44 |
+
)
|
45 |
|
46 |
# Determine device
|
47 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
48 |
+
FP16 = DEVICE == "cuda"
|
49 |
|
50 |
+
# --- Global Variables (Load Models and Knapsack Once) ---
|
51 |
MODEL: InstaNovo | None = None
|
|
|
52 |
MODEL_CONFIG: DictConfig | None = None
|
53 |
+
MODEL_PLUS: InstaNovoPlus | None = None
|
54 |
+
MODEL_PLUS_CONFIG: DictConfig | None = None
|
55 |
+
KNAPSACK: Knapsack | None = None
|
56 |
RESIDUE_SET: ResidueSet | None = None
|
57 |
|
58 |
+
# --- Assets ---
|
59 |
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
|
60 |
|
61 |
# Create gradio temporary directory
|
|
|
67 |
log_file = "/tmp/instanovo_gradio_log.txt"
|
68 |
Path(log_file).touch()
|
69 |
|
70 |
+
logger = logging.getLogger("instanovo_gradio")
|
71 |
logger.setLevel(logging.INFO)
|
72 |
+
if not logger.handlers:
|
73 |
+
file_handler = logging.FileHandler(log_file)
|
74 |
+
file_handler.setLevel(logging.INFO)
|
75 |
+
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
76 |
+
file_handler.setFormatter(formatter)
|
77 |
+
logger.addHandler(file_handler)
|
78 |
+
stream_handler = logging.StreamHandler()
|
79 |
+
stream_handler.setLevel(logging.INFO)
|
80 |
+
stream_handler.setFormatter(formatter)
|
81 |
+
logger.addHandler(stream_handler)
|
82 |
+
|
83 |
+
|
84 |
+
def load_models_and_knapsack():
|
85 |
+
"""Loads the InstaNovo models and generates/loads the knapsack."""
|
86 |
+
global MODEL, KNAPSACK, MODEL_CONFIG, RESIDUE_SET, MODEL_PLUS, MODEL_PLUS_CONFIG
|
87 |
+
models_loaded = MODEL is not None and MODEL_PLUS is not None
|
88 |
+
if models_loaded:
|
89 |
+
logger.info("Models already loaded.")
|
90 |
+
# Still check knapsack if not loaded
|
91 |
+
if KNAPSACK is None:
|
92 |
+
logger.info("Models loaded, but knapsack needs loading/generation.")
|
93 |
+
else:
|
94 |
+
return # All loaded
|
95 |
|
96 |
+
# --- Load Transformer Model ---
|
97 |
+
if MODEL is None:
|
98 |
+
logger.info(f"Loading InstaNovo (Transformer) model: {TRANSFORMER_MODEL_ID} to {DEVICE}...")
|
99 |
+
try:
|
100 |
+
MODEL, MODEL_CONFIG = InstaNovo.from_pretrained(TRANSFORMER_MODEL_ID)
|
101 |
+
MODEL.to(DEVICE)
|
102 |
+
MODEL.eval()
|
103 |
+
RESIDUE_SET = MODEL.residue_set
|
104 |
+
logger.info("Transformer model loaded successfully.")
|
105 |
+
except Exception as e:
|
106 |
+
logger.error(f"Error loading Transformer model: {e}")
|
107 |
+
raise gr.Error(f"Failed to load InstaNovo Transformer model: {TRANSFORMER_MODEL_ID}. Error: {e}")
|
108 |
+
else:
|
109 |
+
logger.info("Transformer model already loaded.")
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# --- Load Diffusion Model ---
|
113 |
+
if MODEL_PLUS is None:
|
114 |
+
logger.info(f"Loading InstaNovo+ (Diffusion) model: {DIFFUSION_MODEL_ID} to {DEVICE}...")
|
115 |
+
try:
|
116 |
+
MODEL_PLUS, MODEL_PLUS_CONFIG = InstaNovoPlus.from_pretrained(DIFFUSION_MODEL_ID)
|
117 |
+
MODEL_PLUS.to(DEVICE)
|
118 |
+
MODEL_PLUS.eval()
|
119 |
+
if RESIDUE_SET is not None and MODEL_PLUS.residues != RESIDUE_SET:
|
120 |
+
logger.warning("Residue sets between Transformer and Diffusion models may differ. Using Transformer's set.")
|
121 |
+
elif RESIDUE_SET is None:
|
122 |
+
RESIDUE_SET = MODEL_PLUS.residues
|
123 |
+
|
124 |
+
logger.info("Diffusion model loaded successfully.")
|
125 |
+
except Exception as e:
|
126 |
+
logger.error(f"Error loading Diffusion model: {e}")
|
127 |
+
gr.Warning(f"Failed to load InstaNovo+ Diffusion model ({DIFFUSION_MODEL_ID}): {e}. Diffusion modes will be unavailable.")
|
128 |
+
MODEL_PLUS = None
|
129 |
+
else:
|
130 |
+
logger.info("Diffusion model already loaded.")
|
131 |
+
|
132 |
|
133 |
# --- Knapsack Handling ---
|
134 |
+
# Only attempt knapsack loading/generation if the Transformer model is loaded
|
135 |
+
if MODEL is not None and RESIDUE_SET is not None and KNAPSACK is None:
|
136 |
+
knapsack_exists = (
|
137 |
+
(KNAPSACK_DIR / "parameters.pkl").exists()
|
138 |
+
and (KNAPSACK_DIR / "masses.npy").exists()
|
139 |
+
and (KNAPSACK_DIR / "chart.npy").exists()
|
140 |
+
)
|
141 |
|
142 |
+
if knapsack_exists:
|
143 |
+
logger.info(f"Loading pre-generated knapsack from {KNAPSACK_DIR}...")
|
144 |
+
try:
|
145 |
+
KNAPSACK = Knapsack.from_file(str(KNAPSACK_DIR))
|
146 |
+
logger.info("Knapsack loaded successfully.")
|
147 |
+
except Exception as e:
|
148 |
+
logger.info(f"Error loading knapsack: {e}. Will attempt to regenerate.")
|
149 |
+
KNAPSACK = None
|
150 |
+
knapsack_exists = False
|
151 |
+
|
152 |
+
if not knapsack_exists:
|
153 |
+
logger.info("Knapsack not found or failed to load. Generating knapsack...")
|
154 |
+
try:
|
155 |
+
residue_masses_knapsack = dict(RESIDUE_SET.residue_masses.copy())
|
156 |
+
special_and_nonpositive = list(RESIDUE_SET.special_tokens) + [
|
157 |
+
k for k, v in residue_masses_knapsack.items() if v <= 0
|
158 |
+
]
|
159 |
+
if special_and_nonpositive:
|
160 |
+
logger.info(f"Excluding special/non-positive mass residues from knapsack: {special_and_nonpositive}")
|
161 |
+
for res in set(special_and_nonpositive):
|
162 |
+
if res in residue_masses_knapsack:
|
163 |
+
del residue_masses_knapsack[res]
|
164 |
+
|
165 |
+
valid_residue_indices = {
|
166 |
+
res: idx
|
167 |
+
for res, idx in RESIDUE_SET.residue_to_index.items()
|
168 |
+
if res in residue_masses_knapsack
|
169 |
+
}
|
170 |
+
|
171 |
+
if not residue_masses_knapsack:
|
172 |
+
raise ValueError("No valid residues with positive mass found for knapsack generation.")
|
173 |
+
|
174 |
+
KNAPSACK = Knapsack.construct_knapsack(
|
175 |
+
residue_masses=residue_masses_knapsack,
|
176 |
+
residue_indices=valid_residue_indices,
|
177 |
+
max_mass=MAX_MASS,
|
178 |
+
mass_scale=MASS_SCALE,
|
179 |
+
)
|
180 |
+
logger.info(f"Knapsack generated. Saving to {KNAPSACK_DIR}...")
|
181 |
+
KNAPSACK_DIR.mkdir(parents=True, exist_ok=True)
|
182 |
+
KNAPSACK.save(str(KNAPSACK_DIR))
|
183 |
+
logger.info("Knapsack saved.")
|
184 |
+
except Exception as e:
|
185 |
+
logger.error(f"Error generating or saving knapsack: {e}", exc_info=True)
|
186 |
+
gr.Warning(f"Failed to generate Knapsack. Knapsack Beam Search will not be available. Error: {e}")
|
187 |
+
KNAPSACK = None
|
188 |
+
elif KNAPSACK is not None:
|
189 |
+
logger.info("Knapsack already loaded.")
|
190 |
+
elif MODEL is None:
|
191 |
+
logger.warning("Transformer model not loaded, skipping Knapsack loading/generation.")
|
|
|
|
|
192 |
|
193 |
+
|
194 |
+
# Load models and knapsack when the script starts
|
195 |
+
load_models_and_knapsack()
|
196 |
|
197 |
|
198 |
def create_inference_config(
|
199 |
input_path: str,
|
200 |
output_path: str,
|
|
|
201 |
) -> DictConfig:
|
202 |
+
"""Creates a base OmegaConf DictConfig for prediction environment."""
|
|
|
203 |
if DEFAULT_CONFIG_PATH.exists():
|
204 |
base_cfg = OmegaConf.load(DEFAULT_CONFIG_PATH)
|
205 |
+
logger.info(f"Loaded base config from {DEFAULT_CONFIG_PATH}")
|
206 |
else:
|
207 |
logger.info(f"Warning: Default config not found at {DEFAULT_CONFIG_PATH}. Using minimal config.")
|
|
|
208 |
base_cfg = OmegaConf.create({
|
209 |
+
"data_path": None, "instanovo_model": TRANSFORMER_MODEL_ID,
|
210 |
+
"instanovoplus_model": DIFFUSION_MODEL_ID, "output_path": None,
|
211 |
+
"knapsack_path": str(KNAPSACK_DIR), "denovo": True, "refine": True,
|
212 |
+
"num_beams": 1, "max_length": 40, "max_charge": 10,
|
213 |
+
"isotope_error_range": [0, 1], "subset": 1.0, "use_knapsack": False,
|
214 |
+
"save_beams": False, "batch_size": 64, "device": DEVICE, "fp16": FP16,
|
215 |
+
"log_interval": 500, "use_basic_logging": True,
|
216 |
+
"filter_precursor_ppm": 20, "filter_confidence": 1e-4,
|
217 |
+
"filter_fdr_threshold": 0.05, "suppressed_residues": None,
|
218 |
+
"disable_terminal_residues_anywhere": True,
|
219 |
+
"residue_remapping": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
"M(ox)": "M[UNIMOD:35]", "M(+15.99)": "M[UNIMOD:35]",
|
221 |
"S(p)": "S[UNIMOD:21]", "T(p)": "T[UNIMOD:21]", "Y(p)": "Y[UNIMOD:21]",
|
222 |
"S(+79.97)": "S[UNIMOD:21]", "T(+79.97)": "T[UNIMOD:21]", "Y(+79.97)": "Y[UNIMOD:21]",
|
223 |
"Q(+0.98)": "Q[UNIMOD:7]", "N(+0.98)": "N[UNIMOD:7]",
|
224 |
"Q(+.98)": "Q[UNIMOD:7]", "N(+.98)": "N[UNIMOD:7]",
|
225 |
+
"C(+57.02)": "C[UNIMOD:4]", "(+42.01)": "[UNIMOD:1]",
|
226 |
+
"(+43.01)": "[UNIMOD:5]", "(-17.03)": "[UNIMOD:385]",
|
227 |
},
|
228 |
+
"column_map": {
|
229 |
"Modified sequence": "modified_sequence", "MS/MS m/z": "precursor_mz",
|
230 |
"Mass": "precursor_mass", "Charge": "precursor_charge",
|
231 |
"Mass values": "mz_array", "Mass spectrum": "mz_array",
|
|
|
234 |
},
|
235 |
"index_columns": [
|
236 |
"scan_number", "precursor_mz", "precursor_charge",
|
237 |
+
"retention_time", "spectrum_id", "experiment_name",
|
238 |
],
|
|
|
239 |
})
|
240 |
|
|
|
241 |
cfg_overrides = {
|
242 |
+
"data_path": input_path, "output_path": output_path,
|
243 |
+
"device": DEVICE, "fp16": FP16, "denovo": True,
|
|
|
|
|
|
|
|
|
244 |
}
|
245 |
+
final_cfg = OmegaConf.merge(base_cfg, cfg_overrides)
|
246 |
+
logger.info(f"Created inference config:\n{OmegaConf.to_yaml(final_cfg)}")
|
247 |
+
return final_cfg
|
248 |
|
249 |
+
def _get_transformer_decoder(selection: str, config: DictConfig) -> tuple[Decoder, int, bool]:
|
250 |
+
"""Helper to instantiate the correct transformer decoder based on selection."""
|
251 |
+
global MODEL, KNAPSACK
|
252 |
+
if MODEL is None:
|
253 |
+
raise gr.Error("InstaNovo Transformer model not loaded.")
|
254 |
+
|
255 |
+
num_beams = 1
|
256 |
+
use_knapsack = False
|
257 |
+
decoder: Decoder
|
258 |
+
|
259 |
+
if "Greedy" in selection:
|
260 |
+
decoder = GreedyDecoder(
|
261 |
+
model=MODEL,
|
262 |
+
mass_scale=MASS_SCALE,
|
263 |
+
suppressed_residues=config.get("suppressed_residues", None),
|
264 |
+
disable_terminal_residues_anywhere=config.get("disable_terminal_residues_anywhere", True),
|
265 |
+
)
|
266 |
+
elif "Knapsack" in selection:
|
267 |
if KNAPSACK is None:
|
268 |
+
raise gr.Error("Knapsack is not available. Cannot use Knapsack Beam Search.")
|
269 |
+
decoder = KnapsackBeamSearchDecoder(model=MODEL, knapsack=KNAPSACK)
|
270 |
+
num_beams = 5 # Default beam size for knapsack
|
271 |
+
use_knapsack = True
|
|
|
|
|
272 |
else:
|
273 |
+
raise ValueError(f"Unknown transformer decoder selection: {selection}")
|
274 |
+
|
275 |
+
logger.info(f"Using Transformer decoder: {type(decoder).__name__} (Num beams: {num_beams}, Use Knapsack: {use_knapsack})")
|
276 |
+
return decoder, num_beams, use_knapsack
|
277 |
+
|
278 |
+
|
279 |
+
def run_transformer_prediction(dl, config, transformer_decoder_selection):
|
280 |
+
"""Runs prediction using only the transformer model."""
|
281 |
+
global RESIDUE_SET
|
282 |
+
if RESIDUE_SET is None:
|
283 |
+
raise gr.Error("ResidueSet not loaded.")
|
284 |
+
|
285 |
+
decoder, num_beams, use_knapsack = _get_transformer_decoder(transformer_decoder_selection, config)
|
286 |
+
|
287 |
+
results_list: list[ScoredSequence | list] = []
|
288 |
+
start_time = time.time()
|
289 |
+
for i, batch in enumerate(dl):
|
290 |
+
spectra, precursors, spectra_mask, _, _ = batch
|
291 |
+
spectra = spectra.to(DEVICE)
|
292 |
+
precursors = precursors.to(DEVICE)
|
293 |
+
spectra_mask = spectra_mask.to(DEVICE)
|
294 |
+
|
295 |
+
with torch.no_grad(), torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16):
|
296 |
+
batch_predictions = decoder.decode(
|
297 |
+
spectra=spectra,
|
298 |
+
precursors=precursors,
|
299 |
+
beam_size=num_beams,
|
300 |
+
max_length=config.max_length,
|
301 |
+
mass_tolerance=config.get("filter_precursor_ppm", 20) * 1e-6,
|
302 |
+
max_isotope=config.isotope_error_range[1] if config.isotope_error_range else 1,
|
303 |
+
return_beam=False, # Only top result
|
304 |
+
)
|
305 |
+
results_list.extend(batch_predictions)
|
306 |
+
if (i + 1) % 10 == 0 or (i + 1) == len(dl):
|
307 |
+
logger.info(f"Transformer prediction: Processed batch {i+1}/{len(dl)}")
|
308 |
+
|
309 |
+
end_time = time.time()
|
310 |
+
logger.info(f"Transformer prediction finished in {end_time - start_time:.2f} seconds.")
|
311 |
+
return results_list
|
312 |
+
|
313 |
+
def run_diffusion_prediction(dl, config):
|
314 |
+
"""Runs prediction using only the diffusion model."""
|
315 |
+
global MODEL_PLUS, RESIDUE_SET
|
316 |
+
if MODEL_PLUS is None or RESIDUE_SET is None:
|
317 |
+
raise gr.Error("InstaNovo+ Diffusion model not loaded.")
|
318 |
+
|
319 |
+
diffusion_decoder = DiffusionDecoder(model=MODEL_PLUS)
|
320 |
+
logger.info(f"Using decoder: {type(diffusion_decoder).__name__}")
|
321 |
+
|
322 |
+
results_sequences = []
|
323 |
+
results_log_probs = []
|
324 |
+
start_time = time.time()
|
325 |
+
|
326 |
+
# Re-create dataloader iterator to get precursor info easily later
|
327 |
+
all_batches = list(dl)
|
328 |
+
|
329 |
+
for i, batch in enumerate(all_batches):
|
330 |
+
spectra, precursors, spectra_mask, _, _ = batch
|
331 |
+
spectra = spectra.to(DEVICE)
|
332 |
+
precursors = precursors.to(DEVICE)
|
333 |
+
spectra_mask = spectra_mask.to(DEVICE)
|
334 |
+
|
335 |
+
with torch.no_grad(), torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16):
|
336 |
+
batch_sequences, batch_log_probs = diffusion_decoder.decode(
|
337 |
+
spectra=spectra,
|
338 |
+
spectra_padding_mask=spectra_mask,
|
339 |
+
precursors=precursors,
|
340 |
+
initial_sequence=None,
|
341 |
+
)
|
342 |
+
results_sequences.extend(batch_sequences)
|
343 |
+
results_log_probs.extend(batch_log_probs)
|
344 |
+
if (i + 1) % 10 == 0 or (i + 1) == len(all_batches):
|
345 |
+
logger.info(f"Diffusion prediction: Processed batch {i+1}/{len(all_batches)}")
|
346 |
+
|
347 |
+
end_time = time.time()
|
348 |
+
logger.info(f"Diffusion prediction finished in {end_time - start_time:.2f} seconds.")
|
349 |
+
|
350 |
+
scored_results = []
|
351 |
+
metrics_calc = Metrics(RESIDUE_SET, config.isotope_error_range)
|
352 |
+
all_precursors = torch.cat([b[1] for b in all_batches], dim=0) # b[1] is precursors
|
353 |
+
|
354 |
+
for idx, (seq, logp) in enumerate(zip(results_sequences, results_log_probs)):
|
355 |
+
prec_mz = all_precursors[idx, 1].item()
|
356 |
+
prec_ch = int(all_precursors[idx, 2].item())
|
357 |
+
try:
|
358 |
+
_, delta_mass_list = metrics_calc.matches_precursor(seq, prec_mz, prec_ch)
|
359 |
+
min_abs_ppm = min(abs(p) for p in delta_mass_list) if delta_mass_list else float("nan")
|
360 |
+
except Exception as e:
|
361 |
+
logger.info(f"Warning: Could not calculate delta mass for diffusion prediction {idx}: {e}")
|
362 |
+
min_abs_ppm = float("nan")
|
363 |
+
|
364 |
+
scored_results.append(
|
365 |
+
ScoredSequence(sequence=seq, mass_error=min_abs_ppm, sequence_log_probability=logp, token_log_probabilities=[])
|
366 |
+
)
|
367 |
+
|
368 |
+
return scored_results
|
369 |
+
|
370 |
+
|
371 |
+
def run_refinement_prediction(dl, config, transformer_decoder_selection):
|
372 |
+
"""Runs transformer prediction followed by diffusion refinement."""
|
373 |
+
global MODEL, MODEL_PLUS, RESIDUE_SET, MODEL_PLUS_CONFIG
|
374 |
+
if MODEL is None or MODEL_PLUS is None or RESIDUE_SET is None or MODEL_PLUS_CONFIG is None:
|
375 |
+
missing = [m for m, v in [("Transformer", MODEL), ("Diffusion", MODEL_PLUS)] if v is None]
|
376 |
+
raise gr.Error(f"Cannot run refinement: {', '.join(missing)} model not loaded.")
|
377 |
+
|
378 |
+
# 1. Run Transformer Prediction (using selected decoder)
|
379 |
+
logger.info(f"Running Transformer prediction ({transformer_decoder_selection}) for refinement...")
|
380 |
+
transformer_decoder, num_beams, _ = _get_transformer_decoder(transformer_decoder_selection, config) # Get selected decoder
|
381 |
+
transformer_results_list: list[ScoredSequence | list] = []
|
382 |
+
|
383 |
+
all_batches = list(dl) # Store batches
|
384 |
+
|
385 |
+
start_time_transformer = time.time()
|
386 |
+
for i, batch in enumerate(all_batches):
|
387 |
+
spectra, precursors, spectra_mask, _, _ = batch
|
388 |
+
spectra = spectra.to(DEVICE)
|
389 |
+
precursors = precursors.to(DEVICE)
|
390 |
+
spectra_mask = spectra_mask.to(DEVICE)
|
391 |
+
|
392 |
+
with torch.no_grad(), torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16):
|
393 |
+
batch_predictions = transformer_decoder.decode(
|
394 |
+
spectra=spectra,
|
395 |
+
precursors=precursors,
|
396 |
+
beam_size=num_beams, # Use selected beam size
|
397 |
+
max_length=config.max_length,
|
398 |
+
mass_tolerance=config.get("filter_precursor_ppm", 20) * 1e-6,
|
399 |
+
max_isotope=config.isotope_error_range[1] if config.isotope_error_range else 1,
|
400 |
+
return_beam=False, # Only top result needed for refinement
|
401 |
+
)
|
402 |
+
transformer_results_list.extend(batch_predictions)
|
403 |
+
if (i + 1) % 10 == 0 or (i + 1) == len(all_batches):
|
404 |
+
logger.info(f"Refinement (Transformer): Processed batch {i+1}/{len(all_batches)}")
|
405 |
+
|
406 |
+
logger.info(f"Transformer prediction for refinement finished in {time.time() - start_time_transformer:.2f} seconds.")
|
407 |
+
|
408 |
+
# 2. Prepare Transformer Predictions as Initial Sequences for Diffusion
|
409 |
+
logger.info("Encoding transformer predictions for diffusion input...")
|
410 |
+
encoded_transformer_preds = []
|
411 |
+
max_len_diffusion = MODEL_PLUS_CONFIG.get("max_length", 40)
|
412 |
+
|
413 |
+
for res in transformer_results_list:
|
414 |
+
if isinstance(res, ScoredSequence) and res.sequence:
|
415 |
+
# Encode sequence *without* EOS for diffusion input.
|
416 |
+
encoded = RESIDUE_SET.encode(res.sequence, add_eos=False, return_tensor='pt')
|
417 |
+
else:
|
418 |
+
# If transformer failed, provide a dummy PAD sequence
|
419 |
+
encoded = torch.full((max_len_diffusion,), RESIDUE_SET.PAD_INDEX, dtype=torch.long)
|
420 |
+
|
421 |
+
|
422 |
+
# Pad or truncate to the diffusion model's max length
|
423 |
+
current_len = encoded.shape[0]
|
424 |
+
if current_len > max_len_diffusion:
|
425 |
+
logger.warning(f"Transformer prediction exceeded diffusion max length ({max_len_diffusion}). Truncating.")
|
426 |
+
encoded = encoded[:max_len_diffusion]
|
427 |
+
elif current_len < max_len_diffusion:
|
428 |
+
padding = torch.full((max_len_diffusion - current_len,), RESIDUE_SET.PAD_INDEX, dtype=torch.long)
|
429 |
+
encoded = torch.cat((encoded, padding))
|
430 |
+
|
431 |
+
encoded_transformer_preds.append(encoded)
|
432 |
+
|
433 |
+
if not encoded_transformer_preds:
|
434 |
+
raise gr.Error("Transformer prediction yielded no results to refine.")
|
435 |
+
encoded_transformer_preds_tensor = torch.stack(encoded_transformer_preds).to(DEVICE)
|
436 |
+
logger.info(f"Encoded {encoded_transformer_preds_tensor.shape[0]} sequences for diffusion.")
|
437 |
+
|
438 |
+
|
439 |
+
# 3. Run Diffusion Refinement
|
440 |
+
logger.info("Running Diffusion refinement...")
|
441 |
+
diffusion_decoder = DiffusionDecoder(model=MODEL_PLUS)
|
442 |
+
refined_sequences = []
|
443 |
+
refined_log_probs = []
|
444 |
+
start_time_diffusion = time.time()
|
445 |
+
|
446 |
+
current_idx = 0
|
447 |
+
for i, batch in enumerate(all_batches):
|
448 |
+
spectra, precursors, spectra_mask, _, _ = batch
|
449 |
+
spectra = spectra.to(DEVICE)
|
450 |
+
precursors = precursors.to(DEVICE)
|
451 |
+
spectra_mask = spectra_mask.to(DEVICE)
|
452 |
+
|
453 |
+
batch_size = spectra.shape[0]
|
454 |
+
initial_sequences_batch = encoded_transformer_preds_tensor[current_idx : current_idx + batch_size]
|
455 |
+
current_idx += batch_size
|
456 |
+
|
457 |
+
if initial_sequences_batch.shape[0] != batch_size:
|
458 |
+
logger.error(f"Batch size mismatch during refinement: expected {batch_size}, got {initial_sequences_batch.shape[0]}")
|
459 |
+
continue # Skip batch?
|
460 |
+
|
461 |
+
with torch.no_grad(), torch.amp.autocast(DEVICE, dtype=torch.float16, enabled=FP16):
|
462 |
+
batch_refined_seqs, batch_refined_logp = diffusion_decoder.decode(
|
463 |
+
spectra=spectra,
|
464 |
+
spectra_padding_mask=spectra_mask,
|
465 |
+
precursors=precursors,
|
466 |
+
initial_sequence=initial_sequences_batch,
|
467 |
+
start_step=DIFFUSION_START_STEP,
|
468 |
+
)
|
469 |
+
refined_sequences.extend(batch_refined_seqs)
|
470 |
+
refined_log_probs.extend(batch_refined_logp)
|
471 |
+
if (i + 1) % 10 == 0 or (i + 1) == len(all_batches):
|
472 |
+
logger.info(f"Refinement (Diffusion): Processed batch {i+1}/{len(all_batches)}")
|
473 |
+
|
474 |
+
logger.info(f"Diffusion refinement finished in {time.time() - start_time_diffusion:.2f} seconds.")
|
475 |
+
|
476 |
+
# 4. Combine and Format Results
|
477 |
+
all_precursors = torch.cat([b[1] for b in all_batches], dim=0) # b[1] is precursors
|
478 |
+
metrics_calc = Metrics(RESIDUE_SET, config.isotope_error_range)
|
479 |
+
combined_results = []
|
480 |
+
for idx, (transformer_res, refined_seq, refined_logp) in enumerate(zip(transformer_results_list, refined_sequences, refined_log_probs)):
|
481 |
+
prec_mz = all_precursors[idx, 1].item()
|
482 |
+
prec_ch = int(all_precursors[idx, 2].item())
|
483 |
+
try:
|
484 |
+
_, delta_mass_list = metrics_calc.matches_precursor(refined_seq, prec_mz, prec_ch)
|
485 |
+
min_abs_ppm = min(abs(p) for p in delta_mass_list) if delta_mass_list else float("nan")
|
486 |
+
except Exception as e:
|
487 |
+
logger.info(f"Warning: Could not calculate delta mass for refined prediction {idx}: {e}")
|
488 |
+
min_abs_ppm = float("nan")
|
489 |
+
|
490 |
+
combined_data = {
|
491 |
+
"transformer_prediction": "".join(transformer_res.sequence) if isinstance(transformer_res, ScoredSequence) else "",
|
492 |
+
"transformer_log_probability": transformer_res.sequence_log_probability if isinstance(transformer_res, ScoredSequence) else float('-inf'),
|
493 |
+
"refined_prediction": "".join(refined_seq),
|
494 |
+
"refined_log_probability": refined_logp,
|
495 |
+
"refined_delta_mass_ppm": min_abs_ppm,
|
496 |
+
}
|
497 |
+
combined_results.append(combined_data)
|
498 |
+
|
499 |
+
return combined_results
|
500 |
|
|
|
|
|
|
|
501 |
|
502 |
@spaces.GPU
|
503 |
+
def predict_peptides(input_file, mode_selection, transformer_decoder_selection):
|
504 |
"""
|
505 |
+
Main function to load data, select mode, run prediction, and return results.
|
506 |
"""
|
507 |
+
# Ensure models are loaded
|
508 |
+
if MODEL is None or RESIDUE_SET is None:
|
509 |
+
load_models_and_knapsack() # Try reload
|
510 |
if MODEL is None:
|
511 |
+
raise gr.Error("InstaNovo Transformer model failed to load. Cannot perform prediction.")
|
512 |
+
if ("Refinement" in mode_selection or "InstaNovo+" in mode_selection) and MODEL_PLUS is None:
|
513 |
+
load_models_and_knapsack() # Try reload diffusion
|
514 |
+
if MODEL_PLUS is None:
|
515 |
+
raise gr.Error("InstaNovo+ Diffusion model failed to load. Cannot perform Refinement or InstaNovo+ Only prediction.")
|
516 |
+
if "Knapsack" in transformer_decoder_selection and KNAPSACK is None:
|
517 |
+
load_models_and_knapsack() # Try reload knapsack
|
518 |
+
if KNAPSACK is None:
|
519 |
+
raise gr.Error("Knapsack failed to load. Cannot use Knapsack Beam Search.")
|
520 |
+
|
521 |
|
522 |
if input_file is None:
|
523 |
raise gr.Error("Please upload a mass spectrometry file.")
|
524 |
|
525 |
+
input_path = input_file.name
|
526 |
+
logger.info(f"--- New Prediction Request ---")
|
527 |
+
logger.info(f"Input File: {input_path}")
|
528 |
+
logger.info(f"Selected Mode: {mode_selection}")
|
529 |
+
if "Refinement" in mode_selection or "InstaNovo Only" in mode_selection:
|
530 |
+
logger.info(f"Selected Transformer Decoder: {transformer_decoder_selection}")
|
531 |
|
532 |
+
# Create temp output file
|
533 |
+
gradio_tmp_dir = os.environ.get("GRADIO_TEMP_DIR", "/tmp")
|
534 |
+
try:
|
535 |
+
with tempfile.NamedTemporaryFile(dir=gradio_tmp_dir, delete=False, suffix=".csv") as temp_out:
|
536 |
+
output_csv_path = temp_out.name
|
537 |
+
logger.info(f"Temporary output path: {output_csv_path}")
|
538 |
+
except Exception as e:
|
539 |
+
logger.error(f"Failed to create temporary file in {gradio_tmp_dir}: {e}")
|
540 |
+
raise gr.Error(f"Failed to create temporary output file: {e}")
|
541 |
|
542 |
try:
|
543 |
+
config = create_inference_config(input_path, output_csv_path)
|
|
|
|
|
544 |
|
|
|
545 |
logger.info("Loading spectrum data...")
|
546 |
try:
|
547 |
+
# Load data eagerly
|
548 |
sdf = SpectrumDataFrame.load(
|
549 |
+
config.data_path, lazy=False, is_annotated=False,
|
550 |
+
column_mapping=config.get("column_map", None), shuffle=False, verbose=True,
|
|
|
|
|
|
|
|
|
551 |
)
|
|
|
552 |
original_size = len(sdf)
|
553 |
max_charge = config.get("max_charge", 10)
|
554 |
+
if "precursor_charge" in sdf.df.columns:
|
555 |
+
sdf.filter_rows(
|
556 |
+
lambda row: ("precursor_charge" in row and row["precursor_charge"] is not None and 0 < row["precursor_charge"] <= max_charge)
|
557 |
+
)
|
558 |
+
if len(sdf) < original_size:
|
559 |
+
logger.info(f"Warning: Filtered {original_size - len(sdf)} spectra with invalid or out-of-range charge (<=0 or >{max_charge}).")
|
560 |
+
else:
|
561 |
+
logger.warning("Column 'precursor_charge' not found. Cannot filter by charge.")
|
562 |
|
563 |
if len(sdf) == 0:
|
564 |
raise gr.Error("No valid spectra found in the uploaded file after filtering.")
|
565 |
logger.info(f"Data loaded: {len(sdf)} spectra.")
|
566 |
+
index_cols_present = [col for col in config.index_columns if col in sdf.df.columns]
|
567 |
+
base_df_pd = sdf.df.select(index_cols_present).to_pandas()
|
568 |
+
|
569 |
except Exception as e:
|
570 |
+
logger.error(f"Error loading data: {e}", exc_info=True)
|
571 |
raise gr.Error(f"Failed to load or process the spectrum file. Error: {e}")
|
572 |
|
573 |
+
if RESIDUE_SET is None: raise gr.Error("Residue set not loaded.") # Should not happen if model loaded
|
574 |
+
|
575 |
+
# --- Prepare DataLoader ---
|
576 |
+
# Use reverse_peptide=True for Transformer steps, False for Diffusion-only
|
577 |
+
reverse_for_transformer = "InstaNovo+ Only" not in mode_selection
|
578 |
ds = SpectrumDataset(
|
579 |
+
sdf, RESIDUE_SET,
|
580 |
+
MODEL_CONFIG.get("n_peaks", 200) if MODEL_CONFIG else 200,
|
581 |
+
return_str=True, annotated=False,
|
582 |
+
pad_spectrum_max_length=config.get("compile_model", False) or config.get("use_flash_attention", False),
|
|
|
|
|
|
|
583 |
bin_spectra=config.get("conv_peak_encoder", False),
|
584 |
+
peptide_pad_length=config.get("max_length", 40) if config.get("compile_model", False) else 0,
|
585 |
+
reverse_peptide=reverse_for_transformer, # Key change based on mode
|
586 |
+
diffusion="InstaNovo+ Only" in mode_selection # Signal if input is for diffusion
|
587 |
)
|
588 |
+
dl = DataLoader(ds, batch_size=config.batch_size, num_workers=0, shuffle=False, collate_fn=collate_batch)
|
589 |
+
|
590 |
+
# --- Run Prediction ---
|
591 |
+
results_data = None
|
592 |
+
output_headers = index_cols_present[:]
|
593 |
+
|
594 |
+
if "InstaNovo Only" in mode_selection:
|
595 |
+
output_headers.extend(["prediction", "log_probability", "delta_mass_ppm", "token_log_probabilities"])
|
596 |
+
transformer_results = run_transformer_prediction(dl, config, transformer_decoder_selection)
|
597 |
+
results_data = []
|
598 |
+
metrics_calc = Metrics(RESIDUE_SET, config.isotope_error_range)
|
599 |
+
for i, res in enumerate(transformer_results):
|
600 |
+
row_data = {}
|
601 |
+
if isinstance(res, ScoredSequence) and res.sequence:
|
602 |
+
row_data["prediction"] = "".join(res.sequence)
|
603 |
+
row_data["log_probability"] = f"{res.sequence_log_probability:.4f}"
|
604 |
+
row_data["token_log_probabilities"] = ", ".join(f"{p:.4f}" for p in res.token_log_probabilities)
|
605 |
+
try:
|
606 |
+
prec_mz = base_df_pd.loc[i, "precursor_mz"]
|
607 |
+
prec_ch = base_df_pd.loc[i, "precursor_charge"]
|
608 |
+
_, delta_mass_list = metrics_calc.matches_precursor(res.sequence, prec_mz, prec_ch)
|
609 |
+
min_abs_ppm = min(abs(p) for p in delta_mass_list) if delta_mass_list else float("nan")
|
610 |
+
row_data["delta_mass_ppm"] = f"{min_abs_ppm:.2f}"
|
611 |
+
except Exception as e:
|
612 |
+
logger.warning(f"Could not calculate delta mass for Tx prediction {i}: {e}")
|
613 |
+
row_data["delta_mass_ppm"] = "N/A"
|
614 |
+
else:
|
615 |
+
row_data.update({k: "N/A" for k in ["prediction", "log_probability", "delta_mass_ppm", "token_log_probabilities"]})
|
616 |
+
row_data["prediction"] = "" # Ensure empty string for failed preds
|
617 |
+
row_data["token_log_probabilities"] = ""
|
618 |
+
results_data.append(row_data)
|
619 |
+
|
620 |
+
elif "InstaNovo+ Only" in mode_selection:
|
621 |
+
output_headers.extend(["prediction", "log_probability", "delta_mass_ppm"])
|
622 |
+
diffusion_results = run_diffusion_prediction(dl, config)
|
623 |
+
results_data = []
|
624 |
+
for res in diffusion_results:
|
625 |
+
row_data = {}
|
626 |
+
if isinstance(res, ScoredSequence) and res.sequence:
|
627 |
+
row_data["prediction"] = "".join(res.sequence)
|
628 |
+
row_data["log_probability"] = f"{res.sequence_log_probability:.4f}" # Avg loss
|
629 |
+
row_data["delta_mass_ppm"] = f"{res.mass_error:.2f}" if not np.isnan(res.mass_error) else "N/A" # ppm
|
630 |
+
else:
|
631 |
+
row_data.update({k: "N/A" for k in ["prediction", "log_probability", "delta_mass_ppm"]})
|
632 |
+
row_data["prediction"] = ""
|
633 |
+
results_data.append(row_data)
|
634 |
+
|
635 |
+
elif "Refinement" in mode_selection:
|
636 |
+
output_headers.extend([
|
637 |
+
"transformer_prediction", "transformer_log_probability",
|
638 |
+
"refined_prediction", "refined_log_probability", "refined_delta_mass_ppm"
|
639 |
+
])
|
640 |
+
# Pass the selected transformer decoder to the refinement function
|
641 |
+
results_data = run_refinement_prediction(dl, config, transformer_decoder_selection)
|
642 |
+
for row in results_data:
|
643 |
+
# Format numbers after getting the list of dicts
|
644 |
+
row["transformer_log_probability"] = f"{row['transformer_log_probability']:.4f}" if isinstance(row['transformer_log_probability'], (float, int)) else "N/A"
|
645 |
+
row["refined_log_probability"] = f"{row['refined_log_probability']:.4f}" if isinstance(row['refined_log_probability'], (float, int)) else "N/A"
|
646 |
+
row["refined_delta_mass_ppm"] = f"{row['refined_delta_mass_ppm']:.2f}" if isinstance(row['refined_delta_mass_ppm'], (float, int)) and not np.isnan(row['refined_delta_mass_ppm']) else "N/A"
|
647 |
+
|
648 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
else:
|
650 |
+
raise ValueError(f"Unknown mode selection: {mode_selection}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
652 |
|
653 |
+
# --- Combine, Save, Return ---
|
654 |
+
logger.info("Combining results...")
|
655 |
+
if results_data is None: raise gr.Error("Prediction did not produce results.")
|
656 |
+
|
657 |
+
results_df = pl.DataFrame(results_data)
|
658 |
+
# Ensure base_df_pd has unique index if using join, or just concat horizontally if order is guaranteed
|
659 |
+
base_df_pl = pl.from_pandas(base_df_pd.reset_index(drop=True))
|
660 |
|
661 |
+
# Simple horizontal concat assuming order is preserved by dataloader (shuffle=False)
|
662 |
+
if len(base_df_pl) == len(results_df):
|
663 |
+
final_df = pl.concat([base_df_pl, results_df], how="horizontal")
|
664 |
+
else:
|
665 |
+
logger.error(f"Length mismatch between base data ({len(base_df_pl)}) and results ({len(results_df)}). Cannot reliably combine.")
|
666 |
+
# Fallback or error? Let's just use results for now, but log error.
|
667 |
+
final_df = results_df # Display only results in case of mismatch
|
668 |
+
|
669 |
+
logger.info(f"Saving full results to {output_csv_path}...")
|
670 |
+
final_df.write_csv(output_csv_path)
|
671 |
+
logger.info("Save complete.")
|
672 |
|
673 |
+
# Select display columns - make sure they exist in final_df
|
674 |
+
display_cols_final = [col for col in output_headers if col in final_df.columns]
|
675 |
+
display_df = final_df.select(display_cols_final)
|
676 |
|
677 |
+
logger.info("--- Prediction Request Complete ---")
|
678 |
+
return display_df.to_pandas(), output_csv_path
|
679 |
|
680 |
except Exception as e:
|
681 |
+
logger.error(f"An error occurred during prediction: {e}", exc_info=True)
|
682 |
+
if 'output_csv_path' in locals() and os.path.exists(output_csv_path):
|
683 |
+
try:
|
684 |
+
os.remove(output_csv_path)
|
685 |
+
logger.info(f"Removed temporary file {output_csv_path}")
|
686 |
+
except OSError:
|
687 |
+
logger.error(f"Failed to remove temporary file {output_csv_path}")
|
688 |
raise gr.Error(f"Prediction failed: {e}")
|
689 |
|
690 |
|
|
|
693 |
.gradio-container { font-family: sans-serif; }
|
694 |
.gr-button { color: white; border-color: black; background: black; }
|
695 |
footer { display: none !important; }
|
|
|
696 |
.logo-container img { margin-bottom: 1rem; }
|
697 |
+
.feedback { font-size: 0.9rem; color: gray; }
|
698 |
"""
|
699 |
|
700 |
with gr.Blocks(
|
701 |
css=css, theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")
|
702 |
) as demo:
|
|
|
703 |
gr.Markdown(
|
704 |
"""
|
705 |
<div style="text-align: center;" class="logo-container">
|
706 |
<img src='/gradio_api/file=assets/instanovo.svg' alt="InstaNovo Logo" width="300" style="display: block; margin: 0 auto;">
|
707 |
</div>
|
708 |
""",
|
709 |
+
elem_classes="logo-container",
|
710 |
)
|
711 |
|
|
|
712 |
gr.Markdown(
|
713 |
+
f"""
|
714 |
+
# 🚀 _De Novo_ Peptide Sequencing with InstaNovo
|
715 |
+
Upload your mass spectrometry data file (.mgf, .mzml, or .mzxml) and get peptide sequence predictions.
|
716 |
+
Choose your prediction method and decoding options.
|
717 |
+
|
718 |
+
**Note:** The InstaNovo+ model `{DIFFUSION_MODEL_ID}` is an alpha release.
|
719 |
"""
|
720 |
)
|
721 |
with gr.Row():
|
|
|
724 |
label="Upload Mass Spectrometry File (.mgf, .mzml, .mzxml)",
|
725 |
file_types=[".mgf", ".mzml", ".mzxml"],
|
726 |
)
|
727 |
+
mode_selection = gr.Radio(
|
728 |
[
|
729 |
+
"InstaNovo + Refinement (Default, Recommended)",
|
730 |
+
"InstaNovo Only (Transformer)",
|
731 |
+
"InstaNovo+ Only (Diffusion, Alpha)",
|
732 |
],
|
733 |
+
label="Prediction Mode",
|
734 |
+
value="InstaNovo + Refinement (Default, Recommended)",
|
735 |
)
|
736 |
+
# Transformer decoder selection - visible for relevant modes
|
737 |
+
transformer_decoder_selection = gr.Radio(
|
738 |
+
[
|
739 |
+
"Greedy Search (Fast)",
|
740 |
+
# Knapsack option added dynamically based on KNAPSACK availability
|
741 |
+
],
|
742 |
+
label="Transformer Decoding Method",
|
743 |
+
value="Greedy Search (Fast)",
|
744 |
+
visible=True, # Start visible as default mode uses it
|
745 |
+
interactive=True,
|
746 |
+
)
|
747 |
+
|
748 |
submit_btn = gr.Button("Predict Sequences", variant="primary")
|
749 |
+
|
750 |
+
# --- Control Visibility & Choices ---
|
751 |
+
def update_transformer_options(mode):
|
752 |
+
# Show decoder selection if mode uses the transformer
|
753 |
+
show_decoder = "InstaNovo+ Only" not in mode
|
754 |
+
# Update choices based on knapsack availability
|
755 |
+
knapsack_available = KNAPSACK is not None
|
756 |
+
choices = ["Greedy Search (Fast)"]
|
757 |
+
if knapsack_available:
|
758 |
+
choices.append("Knapsack Beam Search (Accurate, Slower)")
|
759 |
+
else:
|
760 |
+
logger.info("Knapsack check: Not available, disabling Knapsack Beam Search option.")
|
761 |
+
# Reset to Greedy if Knapsack was selected but becomes unavailable
|
762 |
+
current_value = "Greedy Search (Fast)" # Default reset value
|
763 |
+
return gr.update(visible=show_decoder, choices=choices, value=current_value)
|
764 |
+
|
765 |
+
mode_selection.change(
|
766 |
+
fn=update_transformer_options,
|
767 |
+
inputs=mode_selection,
|
768 |
+
outputs=transformer_decoder_selection,
|
769 |
+
)
|
770 |
+
# Initial check in case knapsack fails on startup
|
771 |
+
# This requires JS or a different approach in Gradio.
|
772 |
+
# For simplicity, we rely on the check during prediction.
|
773 |
+
# We can set initial choices based on load status here though.
|
774 |
+
initial_choices = ["Greedy Search (Fast)"]
|
775 |
+
if KNAPSACK is not None:
|
776 |
+
initial_choices.append("Knapsack Beam Search (Accurate, Slower)")
|
777 |
+
transformer_decoder_selection.choices = initial_choices
|
778 |
+
|
779 |
+
|
780 |
with gr.Column(scale=2):
|
781 |
output_df = gr.DataFrame(
|
782 |
+
label="Prediction Results Preview",
|
783 |
+
headers=["scan_number", "prediction", "log_probability", "delta_mass_ppm"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
)
|
785 |
output_file = gr.File(label="Download Full Results (CSV)")
|
786 |
|
787 |
submit_btn.click(
|
788 |
predict_peptides,
|
789 |
+
inputs=[input_file, mode_selection, transformer_decoder_selection],
|
790 |
outputs=[output_df, output_file],
|
791 |
)
|
792 |
|
793 |
gr.Examples(
|
794 |
[
|
795 |
+
["assets/sample_spectra.mgf", "InstaNovo + Refinement (Default, Recommended)", "Greedy Search (Fast)"],
|
796 |
+
["assets/sample_spectra.mgf", "InstaNovo + Refinement (Default, Recommended)", "Knapsack Beam Search (Accurate, Slower)"],
|
797 |
+
["assets/sample_spectra.mgf", "InstaNovo Only (Transformer)", "Greedy Search (Fast)"],
|
798 |
+
["assets/sample_spectra.mgf", "InstaNovo Only (Transformer)", "Knapsack Beam Search (Accurate, Slower)"],
|
799 |
+
["assets/sample_spectra.mgf", "InstaNovo+ Only (Diffusion, Alpha)", "Greedy Search (Fast)"],
|
800 |
],
|
801 |
+
inputs=[input_file, mode_selection, transformer_decoder_selection],
|
802 |
+
# outputs=[output_df, output_file],
|
803 |
+
cache_examples=False,
|
804 |
+
label="Example Usage (Note: Knapsack examples require Knapsack to be available)",
|
|
|
805 |
)
|
806 |
|
807 |
gr.Markdown(
|
808 |
+
f"""
|
809 |
**Notes:**
|
810 |
+
* Predictions use `{TRANSFORMER_MODEL_ID}` (Transformer) and `{DIFFUSION_MODEL_ID}` (Diffusion, Alpha).
|
811 |
+
* **Refinement Mode:** Runs initial prediction with the selected Transformer method (Greedy/Knapsack), then refines using InstaNovo+.
|
812 |
+
* **InstaNovo Only Mode:** Uses only the Transformer with the selected decoding method.
|
813 |
+
* **InstaNovo+ Only Mode:** Predicts directly using the Diffusion model (alpha version).
|
814 |
+
* `delta_mass_ppm` shows the lowest absolute precursor mass error (ppm) across isotopes 0-1 for the final sequence.
|
815 |
+
* Knapsack Beam Search requires a pre-computed knapsack file. If unavailable, the option will be disabled.
|
816 |
+
* Check logs for progress, especially for large files or slower methods.
|
817 |
+
""",
|
818 |
+
elem_classes="feedback"
|
819 |
)
|
820 |
|
821 |
+
with gr.Accordion("Application Logs", open=False):
|
|
|
822 |
log_display = Log(log_file, dark=True, height=300)
|
823 |
+
|
824 |
+
gr.Markdown(
|
825 |
value="""
|
826 |
+
If you use InstaNovo in your research, please cite:
|
827 |
+
|
828 |
+
```bibtex
|
829 |
@article{eloff_kalogeropoulos_2025_instanovo,
|
830 |
title = {InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale proteomics experiments},
|
831 |
+
author = {Kevin Eloff and Konstantinos Kalogeropoulos and Amandla Mabona and Oliver Morell and Rachel Catzel and
|
832 |
+
Esperanza Rivera-de-Torre and Jakob Berg Jespersen and Wesley Williams and Sam P. B. van Beljouw and
|
833 |
+
Marcin J. Skwark and Andreas Hougaard Laustsen and Stan J. J. Brouns and Anne Ljungars and Erwin M.
|
834 |
+
Schoof and Jeroen Van Goey and Ulrich auf dem Keller and Karim Beguir and Nicolas Lopez Carranza and
|
835 |
Timothy P. Jenkins},
|
836 |
year = 2025,
|
837 |
month = {Mar},
|
|
|
842 |
}
|
843 |
""",
|
844 |
show_copy_button=True,
|
845 |
+
label="If you use InstaNovo in your research, please cite:"
|
|
|
846 |
)
|
847 |
|
848 |
# --- Launch the App ---
|
|
|
851 |
# Set server_name="0.0.0.0" to allow access from network if needed
|
852 |
# demo.launch(server_name="0.0.0.0", server_port=7860)
|
853 |
# For Hugging Face Spaces, just demo.launch() is usually sufficient
|
854 |
+
demo.launch()
|
855 |
+
# demo.launch(share=True) # For local testing with public URL
|