File size: 1,210 Bytes
87248a0
 
 
 
 
 
7243e58
 
 
87248a0
 
 
 
 
 
 
064c454
 
 
 
87248a0
 
 
 
 
 
 
ccfe614
 
 
 
 
87248a0
 
ccfe614
 
 
 
 
87248a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import streamlit as st
import pandas as pd
from utils.style import style_long_context

@st.cache_data
def load_data():
    df = pd.read_csv("data/long_context.csv")
    df.dropna(inplace=True) # Drop rows with any missing values
    return df

def show():
    st.title("Long Context Leaderboard")
    # Load and style data
    df = load_data()
    styled_df = style_long_context(df)

    st.markdown(styled_df, unsafe_allow_html=True) # No need to call to_html() again
    # st.dataframe(styled_df, use_container_width=True)

    # st.html(styled_df)

    # Optionally, keep some explanatory text
    st.markdown("""
    **Context Lengths**:
    - 8K: 8,000 tokens
    - 16K: 16,000 tokens
    - 32K: 32,000 tokens
                
    **Colors**:
    - Yellow: reasoning model
    - Green: linear attention hybrid model
    - Blue: SSM hybrid model

    **Benchmark Details**:
    - Evaluated on Symbolic, Medium, and Hard subtasks.
    - Area Under Curve(AUC) Metrics is Used to Compare between LLM Performance.
    - AUC is calculated using np.trapz function.
    - AUC scores aggregated across context lengths.
    - Larger context evaluations limited by compute constraints and model performance.
    """)