atlas5301 commited on
Commit
7243e58
·
1 Parent(s): 22df38a

make it look better

Browse files
pages/benchmark_viewer.py CHANGED
@@ -33,20 +33,20 @@ def show():
33
 
34
  with col1:
35
  datasets = df['dataset'].unique()
36
- selected_datasets = st.multiselect("Dataset(s)", datasets, default=datasets)
37
- # Filter data based on selected datasets first
38
  filtered_df = df[df['dataset'].isin(selected_datasets)]
39
 
40
  lengths = sorted(filtered_df['length'].unique())
41
  # Disable length filter if no datasets are selected
42
  disabled = not selected_datasets
43
- selected_lengths = st.multiselect("Length(s)", lengths, default=lengths if not disabled and lengths else [], disabled=disabled)
44
 
45
 
46
  with col2:
47
  # Single Model Multiselect (filtered by selected datasets)
48
  available_models = filtered_df['model'].unique()
49
- selected_models = st.multiselect("Model(s)", available_models, default=available_models) # Handle empty defaults
50
 
51
  with col3:
52
  min_op, max_op = st.slider("Op Range", int(filtered_df['op'].min()), int(filtered_df['op'].max()), (int(filtered_df['op'].min()), int(filtered_df['op'].max())))
@@ -82,7 +82,7 @@ def show():
82
  ))
83
 
84
  y_title = "Log(Accuracy)" if log_scale else "Accuracy"
85
- fig.update_layout(title=f"{y_title} vs Op", xaxis_title="Op", yaxis_title=y_title)
86
  return fig
87
 
88
  view_option = st.radio("View", ["Accuracy", "Log(Accuracy)"])
 
33
 
34
  with col1:
35
  datasets = df['dataset'].unique()
36
+ selected_datasets = st.multiselect("Dataset(s)", datasets, default=['symbolic']) # Default to 'symbolic'
37
+
38
  filtered_df = df[df['dataset'].isin(selected_datasets)]
39
 
40
  lengths = sorted(filtered_df['length'].unique())
41
  # Disable length filter if no datasets are selected
42
  disabled = not selected_datasets
43
+ selected_lengths = st.multiselect("Length(s)", lengths, default=[0] if not disabled and 0 in lengths else [], disabled=disabled) # Default to 0 if available
44
 
45
 
46
  with col2:
47
  # Single Model Multiselect (filtered by selected datasets)
48
  available_models = filtered_df['model'].unique()
49
+ selected_models = st.multiselect("Model(s)", available_models, default=['qwen-2.5-7b-instruct'] if 'qwen-2.5-7b-instruct' in available_models else available_models) # Default to qwen-2.5-7b-instruct if available, otherwise select all
50
 
51
  with col3:
52
  min_op, max_op = st.slider("Op Range", int(filtered_df['op'].min()), int(filtered_df['op'].max()), (int(filtered_df['op'].min()), int(filtered_df['op'].max())))
 
82
  ))
83
 
84
  y_title = "Log(Accuracy)" if log_scale else "Accuracy"
85
+ fig.update_layout(title=f"{y_title} vs Op", xaxis_title="Op", yaxis_title=y_title, width=800, height=600)
86
  return fig
87
 
88
  view_option = st.radio("View", ["Accuracy", "Log(Accuracy)"])
pages/long_context.py CHANGED
@@ -4,7 +4,9 @@ from utils.style import style_long_context
4
 
5
  @st.cache_data
6
  def load_data():
7
- return pd.read_csv("data/long_context.csv")
 
 
8
 
9
  def show():
10
  st.title("Long Context Leaderboard")
@@ -17,7 +19,7 @@ def show():
17
  st.dataframe(
18
  styled_df,
19
  use_container_width=True,
20
- height=600,
21
  hide_index=True,
22
  column_config={
23
  "Model": st.column_config.TextColumn(width="large"),
 
4
 
5
  @st.cache_data
6
  def load_data():
7
+ df = pd.read_csv("data/long_context.csv")
8
+ df.dropna(inplace=True) # Drop rows with any missing values
9
+ return df
10
 
11
  def show():
12
  st.title("Long Context Leaderboard")
 
19
  st.dataframe(
20
  styled_df,
21
  use_container_width=True,
22
+ height=35*(len(df)+1),
23
  hide_index=True,
24
  column_config={
25
  "Model": st.column_config.TextColumn(width="large"),
pages/zero_context.py CHANGED
@@ -22,7 +22,7 @@ def show():
22
  styled_df,
23
  use_container_width=True,
24
  hide_index=True,
25
- height=800,
26
  column_config={
27
  "Model": st.column_config.TextColumn(width="large"),
28
  "Symbolic": st.column_config.NumberColumn(format="%.2f"),
 
22
  styled_df,
23
  use_container_width=True,
24
  hide_index=True,
25
+ height=35*(1+len(raw_df)),
26
  column_config={
27
  "Model": st.column_config.TextColumn(width="large"),
28
  "Symbolic": st.column_config.NumberColumn(format="%.2f"),