File size: 9,664 Bytes
4d6e8c2 fe4a4cb 3b09640 fe4a4cb 4d6e8c2 fe4a4cb 4d6e8c2 4768d6b 3b09640 4d6e8c2 70f5f26 1c33274 70f5f26 fe4a4cb 8169d28 3b09640 1c33274 70f5f26 4d6e8c2 b321cd2 8169d28 b321cd2 fe4a4cb 4d6e8c2 fe4a4cb 3b09640 4768d6b 3b09640 fe4a4cb 1431ab9 fe4a4cb b321cd2 d87ee35 b321cd2 d87ee35 b321cd2 f19a289 8ac3d53 2a198b3 fe4a4cb 2a198b3 576ff5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
from sklearn.metrics import accuracy_score
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
# Map string predictions to numeric labels
numeric_predictions = map_predictions_to_labels(predictions)
# Extract true labels (already numeric)
true_labels = test_dataset["label"]
# Calculate accuracy
accuracy = accuracy_score(true_labels, numeric_predictions)
print("Accuracy:", accuracy)
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("RYmV25"))
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
import tensorflow as tf
import tensorflow_hub as hub
import librosa
import numpy as np
import os
# Load the YAMNet model from TensorFlow Hub
yamnet_model_url = "https://tfhub.dev/google/yamnet/1"
yamnet = hub.load(yamnet_model_url)
# Download YAMNet class map CSV file
labels_path = "https://raw.githubusercontent.com/tensorflow/models/master/research/audioset/yamnet/yamnet_class_map.csv"
labels = tf.keras.utils.get_file("yamnet_class_map.csv", labels_path)
# Read class names from the downloaded CSV
def load_class_names(csv_file_path):
class_names = []
with open(csv_file_path, "r") as file:
next(file) # Skip the header
for line in file:
class_names.append(line.strip().split(",")[-1]) # Get the class name from the last column
return class_names
yamnet_classes = load_class_names(labels)
# Define a function for YAMNet inference
def yamnet_inference(file_name):
try:
# Load the audio file and resample to 16kHz (YAMNet's expected sample rate)
waveform, sample_rate = librosa.load(file_name, sr=16000)
# Normalize audio data
waveform = waveform / np.max(np.abs(waveform))
# Convert to tensor
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
# Predict the scores and embeddings from YAMNet
scores, embeddings, spectrogram = yamnet(waveform)
# Average the scores across time frames to get a single prediction for the entire audio
prediction = tf.reduce_mean(scores, axis=0).numpy()
return prediction
except Exception as e:
print(f"Error processing file {file_name}: {e}")
return None
# Function to map predictions to class names
def get_top_class(predictions):
if predictions is None:
return "Error"
top_class = np.argmax(predictions) # Get the index of the class with the highest score
return yamnet_classes[top_class] if top_class < len(yamnet_classes) else "Unknown"
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
from datasets import DatasetDict
# Load YAMNet Model
yamnet_model_url = "https://tfhub.dev/google/yamnet/1"
yamnet_model = hub.load(yamnet_model_url)
# Function to extract embeddings from audio
def extract_embedding(audio_example):
'''Extract YAMNet embeddings from a waveform'''
# Convert the audio example to a NumPy array
waveform = audio_example["audio"]["array"] # Ensure correct key reference
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
# Run YAMNet model
scores, embeddings, spectrogram = yamnet_model(waveform)
return {"embedding": embeddings.numpy()}
# Apply embedding extraction to training data
train_embeddings = dataset["train"].map(extract_embedding)
# Apply embedding extraction to testing data
test_embeddings = dataset["test"].map(extract_embedding)
X_train, y_train = [], []
X_test, y_test = [], []
# Process Training Data
for example in train_embeddings:
for embedding in example["embedding"]:
X_train.append(embedding)
y_train.append(example["label"])
# Process Testing Data
for example in test_embeddings:
for embedding in example["embedding"]:
X_test.append(embedding)
y_test.append(example["label"])
# Convert to NumPy arrays
X_train = np.array(X_train)
y_train = np.array(y_train)
X_test = np.array(X_test)
y_test = np.array(y_test)
# Convert labels to categorical (one-hot encoding)
y_train_cat = to_categorical(y_train, num_classes=2)
y_test_cat = to_categorical(y_test, num_classes=2)
print(f"Training samples: {X_train.shape}, Test samples: {X_test.shape}")
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
# Define the model
model = Sequential([
Dense(128, activation='relu', input_shape=(X_train.shape[1],)),
Dropout(0.3),
Dense(64, activation='relu'),
Dropout(0.3),
Dense(2, activation='softmax') # 2 classes: chainsaw (0) vs. environment (1)
])
model.summary()
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Train the model on YAMNet embeddings
model.fit(X_train, y_train_cat, epochs=20, batch_size=16, validation_data=(X_test, y_test_cat))
# Evaluate the model
y_pred = model.predict(X_test)
y_pred_labels = np.argmax(y_pred, axis=1)
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test, y_pred_labels)
print("Transfer Learning Model Accuracy:", accuracy)
# Predict labels for the test dataset
# Run YAMNet inference on the raw audio data
predictions = []
for audio_data in test_dataset["audio"]:
# Extract waveform and sampling rate
waveform = audio_data["array"]
sample_rate = audio_data["sampling_rate"]
# Resample the waveform to 16kHz (YAMNet's expected sample rate) if necessary
if sample_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
# Convert waveform to tensor
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
# Ensure waveform is 1D
waveform = tf.squeeze(waveform)
# Predict with YAMNet--->model
# Get YAMNet embeddings
_, embeddings, _ = yamnet_model(waveform) # Using the original yamnet_model for embedding extraction
# Calculate the mean of the embeddings across the time dimension
embeddings = tf.reduce_mean(embeddings, axis=0) # Average across time frames
# Reshape embeddings for prediction
embeddings = embeddings.numpy() # Convert to NumPy array
embeddings = embeddings.reshape(1, -1) # Reshape to (1, embedding_dimension)
# Now predict using your trained model
scores = model.predict(embeddings)
# Get predicted class
predicted_class_index = np.argmax(scores)
predicted_class_label = predicted_class_index # Assuming 0 for 'chainsaw', 1 for 'environment'
# Get the top class name using the predicted label
top_class = "chainsaw" if predicted_class_label == 0 else "environment"
predictions.append(top_class)
print("Predictions:", predictions)
def map_predictions_to_labels(predictions):
"""
Maps string predictions to numeric labels:
- "chainsaw" -> 0
- any other class -> 1
Args:
predictions (list of str): List of class name predictions.
Returns:
list of int: Mapped numeric labels.
"""
return [0 if pred == "chainsaw" else 1 for pred in predictions]
from sklearn.metrics import accuracy_score
# Map string predictions to numeric labels
numeric_predictions = map_predictions_to_labels(predictions)
# Extract true labels (already numeric)
true_labels = test_dataset["label"]
# Calculate accuracy
accuracy = accuracy_score(true_labels, numeric_predictions)
print("Accuracy:", accuracy)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
print(results)
|