Update tasks/audio.py
Browse files- tasks/audio.py +10 -10
tasks/audio.py
CHANGED
@@ -17,21 +17,21 @@ DESCRIPTION = "Random Baseline"
|
|
17 |
ROUTE = "/audio"
|
18 |
|
19 |
|
|
|
20 |
|
21 |
@router.post(ROUTE, tags=["Audio Task"],
|
22 |
description=DESCRIPTION)
|
23 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
24 |
-
from sklearn.metrics import accuracy_score
|
25 |
-
|
26 |
-
# Map string predictions to numeric labels
|
27 |
-
numeric_predictions = map_predictions_to_labels(predictions)
|
28 |
-
|
29 |
-
# Extract true labels (already numeric)
|
30 |
-
true_labels = test_dataset["label"]
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Get space info
|
37 |
username, space_url = get_space_info()
|
|
|
17 |
ROUTE = "/audio"
|
18 |
|
19 |
|
20 |
+
from sklearn.metrics import accuracy_score
|
21 |
|
22 |
@router.post(ROUTE, tags=["Audio Task"],
|
23 |
description=DESCRIPTION)
|
24 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Map string predictions to numeric labels
|
27 |
+
numeric_predictions = map_predictions_to_labels(predictions)
|
28 |
+
|
29 |
+
# Extract true labels (already numeric)
|
30 |
+
true_labels = test_dataset["label"]
|
31 |
+
|
32 |
+
# Calculate accuracy
|
33 |
+
accuracy = accuracy_score(true_labels, numeric_predictions)
|
34 |
+
print("Accuracy:", accuracy)
|
35 |
|
36 |
# Get space info
|
37 |
username, space_url = get_space_info()
|