interviewer / app.py
IliaLarchenko's picture
Minor refactoring
ab840dc
raw
history blame
8.28 kB
import os
import gradio as gr
import numpy as np
from api.audio import STTManager, TTSManager
from api.llm import LLMManager
from config import config
from docs.instruction import instruction
from resources.data import fixed_messages, topics_list
from resources.prompts import prompts
from utils.ui import add_candidate_message, add_interviewer_message, get_status_color
llm = LLMManager(config, prompts)
tts = TTSManager(config)
stt = STTManager(config)
# Interface
with gr.Blocks(title="AI Interviewer") as demo:
if os.getenv("IS_DEMO"):
gr.Markdown(instruction["demo"])
started_coding = gr.State(False)
audio_output = gr.Audio(label="Play audio", autoplay=True, visible=os.environ.get("DEBUG", False), streaming=tts.streaming)
with gr.Tab("Instruction") as instruction_tab:
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(instruction["introduction"])
with gr.Column(scale=1):
space = " " * 10
tts_status = get_status_color(tts)
gr.Markdown(f"TTS status: {tts_status}{space}{config.tts.name}")
stt_status = get_status_color(stt)
gr.Markdown(f"STT status: {stt_status}{space}{config.stt.name}")
llm_status = get_status_color(llm)
gr.Markdown(f"LLM status: {llm_status}{space}{config.llm.name}")
gr.Markdown(instruction["quick_start"])
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(instruction["interface"])
with gr.Column(scale=1):
gr.Markdown("Bot interaction area will look like this. Use Record button to record your answer.")
gr.Markdown("Click 'Send' to send you answer and get a reply.")
chat_example = gr.Chatbot(
label="Chat", show_label=False, show_share_button=False, value=[["Candidate message", "Interviewer message"]]
)
default_audio_params = {
"label": "Record answer",
"sources": ["microphone"],
"type": "numpy",
"waveform_options": {"show_controls": False},
"editable": False,
"container": False,
"show_share_button": False,
"streaming": stt.streaming,
}
send_btn_example = gr.Button("Send", interactive=False)
audio_input_example = gr.Audio(interactive=True, **default_audio_params)
gr.Markdown(instruction["models"])
gr.Markdown(instruction["acknowledgements"])
gr.Markdown(instruction["legal"])
with gr.Tab("Coding") as coding_tab:
chat_history = gr.State([])
previous_code = gr.State("")
with gr.Accordion("Settings") as init_acc:
with gr.Row():
with gr.Column():
gr.Markdown("##### Problem settings")
with gr.Row():
gr.Markdown("Difficulty")
difficulty_select = gr.Dropdown(
label="Select difficulty",
choices=["Easy", "Medium", "Hard"],
value="Medium",
container=False,
allow_custom_value=True,
)
with gr.Row():
gr.Markdown("Topic (can type custom value)")
topic_select = gr.Dropdown(
label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True
)
with gr.Column(scale=2):
requirements = gr.Textbox(label="Requirements", placeholder="Specify additional requirements", lines=5)
start_btn = gr.Button("Generate a problem")
with gr.Accordion("Problem statement", open=True) as problem_acc:
description = gr.Markdown()
with gr.Accordion("Solution", open=False) as solution_acc:
with gr.Row() as content:
with gr.Column(scale=2):
code = gr.Code(
label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
language="python",
lines=46,
)
with gr.Column(scale=1):
end_btn = gr.Button("Finish the interview", interactive=False)
chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False)
message = gr.Textbox(
label="Message",
placeholder="Your message will appear here",
show_label=False,
lines=3,
max_lines=3,
interactive=False,
)
send_btn = gr.Button("Send", interactive=False)
audio_input = gr.Audio(interactive=False, **default_audio_params)
audio_buffer = gr.State(np.array([], dtype=np.int16))
transcript = gr.State({"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""})
with gr.Accordion("Feedback", open=True) as feedback_acc:
feedback = gr.Markdown()
# Events
coding_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat, started_coding], outputs=[chat]).success(
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
)
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
fn=lambda: True, outputs=[started_coding]
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: (gr.update(open=False), gr.update(interactive=False)), outputs=[init_acc, start_btn]
).success(
fn=llm.get_problem,
inputs=[requirements, difficulty_select, topic_select],
outputs=[description],
scroll_to_output=True,
).success(
fn=llm.init_bot, inputs=[description], outputs=[chat_history]
).success(
fn=lambda: (gr.update(open=True), gr.update(interactive=True), gr.update(interactive=True)),
outputs=[solution_acc, end_btn, audio_input],
)
end_btn.click(
fn=add_interviewer_message(fixed_messages["end"]),
inputs=[chat],
outputs=[chat],
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: (gr.update(open=False), gr.update(interactive=False), gr.update(open=False), gr.update(interactive=False)),
outputs=[solution_acc, end_btn, problem_acc, audio_input],
).success(
fn=llm.end_interview, inputs=[description, chat_history], outputs=[feedback]
)
send_btn.click(fn=add_candidate_message, inputs=[message, chat], outputs=[chat]).success(fn=lambda: None, outputs=[message]).success(
fn=llm.send_request,
inputs=[code, previous_code, chat_history, chat],
outputs=[chat_history, chat, previous_code],
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: gr.update(interactive=False), outputs=[send_btn]
).success(
fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer]
).success(
fn=lambda: {"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""}, outputs=[transcript]
)
if stt.streaming:
audio_input.stream(
stt.process_audio_chunk,
inputs=[audio_input, audio_buffer, transcript],
outputs=[transcript, audio_buffer, message],
show_progress="hidden",
)
audio_input.stop_recording(fn=lambda: gr.update(interactive=True), outputs=[send_btn])
else:
audio_input.stop_recording(fn=stt.speech_to_text_full, inputs=[audio_input], outputs=[message]).success(
fn=lambda: gr.update(interactive=True), outputs=[send_btn]
).success(fn=lambda: None, outputs=[audio_input])
demo.launch(show_api=False)