Spaces:
Sleeping
Sleeping
File size: 8,284 Bytes
ec74f30 df25732 3a5dbe6 df25732 3667c7a ab840dc 3667c7a 1b279d5 70bf9cc fdae8f6 2d989a9 70bf9cc 15f2bc2 00be385 72abfd9 6ba2996 2d989a9 6ba2996 2d989a9 e98b248 4518e15 ac13632 6ba2996 d6cd6c2 2d989a9 ab840dc 2d989a9 eef0040 ab840dc 2d989a9 8138173 6ba2996 1b279d5 df25732 a10bc68 1b279d5 c57cd9a a10bc68 891f3b9 a10bc68 c57cd9a df25732 1b279d5 70bf9cc fb73ff7 3a5dbe6 a10bc68 df25732 87ae702 1b279d5 3a5dbe6 1b279d5 87ae702 3a5dbe6 df25732 70bf9cc e227c00 e71ef7a 1b279d5 e227c00 1f19f64 e227c00 eef0040 e227c00 3667c7a 72abfd9 8d3b67a a10bc68 e227c00 8d3b67a e227c00 eef0040 f6e34f2 c57cd9a 1b279d5 eef0040 e227c00 e71ef7a c8e8be4 ab840dc 3667c7a 82598a2 78654a1 3a5dbe6 eef0040 e227c00 3a5dbe6 87ae702 3a5dbe6 eef0040 3a5dbe6 eef0040 3a5dbe6 1b279d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import gradio as gr
import numpy as np
from api.audio import STTManager, TTSManager
from api.llm import LLMManager
from config import config
from docs.instruction import instruction
from resources.data import fixed_messages, topics_list
from resources.prompts import prompts
from utils.ui import add_candidate_message, add_interviewer_message, get_status_color
llm = LLMManager(config, prompts)
tts = TTSManager(config)
stt = STTManager(config)
# Interface
with gr.Blocks(title="AI Interviewer") as demo:
if os.getenv("IS_DEMO"):
gr.Markdown(instruction["demo"])
started_coding = gr.State(False)
audio_output = gr.Audio(label="Play audio", autoplay=True, visible=os.environ.get("DEBUG", False), streaming=tts.streaming)
with gr.Tab("Instruction") as instruction_tab:
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(instruction["introduction"])
with gr.Column(scale=1):
space = " " * 10
tts_status = get_status_color(tts)
gr.Markdown(f"TTS status: {tts_status}{space}{config.tts.name}")
stt_status = get_status_color(stt)
gr.Markdown(f"STT status: {stt_status}{space}{config.stt.name}")
llm_status = get_status_color(llm)
gr.Markdown(f"LLM status: {llm_status}{space}{config.llm.name}")
gr.Markdown(instruction["quick_start"])
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(instruction["interface"])
with gr.Column(scale=1):
gr.Markdown("Bot interaction area will look like this. Use Record button to record your answer.")
gr.Markdown("Click 'Send' to send you answer and get a reply.")
chat_example = gr.Chatbot(
label="Chat", show_label=False, show_share_button=False, value=[["Candidate message", "Interviewer message"]]
)
default_audio_params = {
"label": "Record answer",
"sources": ["microphone"],
"type": "numpy",
"waveform_options": {"show_controls": False},
"editable": False,
"container": False,
"show_share_button": False,
"streaming": stt.streaming,
}
send_btn_example = gr.Button("Send", interactive=False)
audio_input_example = gr.Audio(interactive=True, **default_audio_params)
gr.Markdown(instruction["models"])
gr.Markdown(instruction["acknowledgements"])
gr.Markdown(instruction["legal"])
with gr.Tab("Coding") as coding_tab:
chat_history = gr.State([])
previous_code = gr.State("")
with gr.Accordion("Settings") as init_acc:
with gr.Row():
with gr.Column():
gr.Markdown("##### Problem settings")
with gr.Row():
gr.Markdown("Difficulty")
difficulty_select = gr.Dropdown(
label="Select difficulty",
choices=["Easy", "Medium", "Hard"],
value="Medium",
container=False,
allow_custom_value=True,
)
with gr.Row():
gr.Markdown("Topic (can type custom value)")
topic_select = gr.Dropdown(
label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True
)
with gr.Column(scale=2):
requirements = gr.Textbox(label="Requirements", placeholder="Specify additional requirements", lines=5)
start_btn = gr.Button("Generate a problem")
with gr.Accordion("Problem statement", open=True) as problem_acc:
description = gr.Markdown()
with gr.Accordion("Solution", open=False) as solution_acc:
with gr.Row() as content:
with gr.Column(scale=2):
code = gr.Code(
label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
language="python",
lines=46,
)
with gr.Column(scale=1):
end_btn = gr.Button("Finish the interview", interactive=False)
chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False)
message = gr.Textbox(
label="Message",
placeholder="Your message will appear here",
show_label=False,
lines=3,
max_lines=3,
interactive=False,
)
send_btn = gr.Button("Send", interactive=False)
audio_input = gr.Audio(interactive=False, **default_audio_params)
audio_buffer = gr.State(np.array([], dtype=np.int16))
transcript = gr.State({"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""})
with gr.Accordion("Feedback", open=True) as feedback_acc:
feedback = gr.Markdown()
# Events
coding_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat, started_coding], outputs=[chat]).success(
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
)
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
fn=lambda: True, outputs=[started_coding]
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: (gr.update(open=False), gr.update(interactive=False)), outputs=[init_acc, start_btn]
).success(
fn=llm.get_problem,
inputs=[requirements, difficulty_select, topic_select],
outputs=[description],
scroll_to_output=True,
).success(
fn=llm.init_bot, inputs=[description], outputs=[chat_history]
).success(
fn=lambda: (gr.update(open=True), gr.update(interactive=True), gr.update(interactive=True)),
outputs=[solution_acc, end_btn, audio_input],
)
end_btn.click(
fn=add_interviewer_message(fixed_messages["end"]),
inputs=[chat],
outputs=[chat],
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: (gr.update(open=False), gr.update(interactive=False), gr.update(open=False), gr.update(interactive=False)),
outputs=[solution_acc, end_btn, problem_acc, audio_input],
).success(
fn=llm.end_interview, inputs=[description, chat_history], outputs=[feedback]
)
send_btn.click(fn=add_candidate_message, inputs=[message, chat], outputs=[chat]).success(fn=lambda: None, outputs=[message]).success(
fn=llm.send_request,
inputs=[code, previous_code, chat_history, chat],
outputs=[chat_history, chat, previous_code],
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: gr.update(interactive=False), outputs=[send_btn]
).success(
fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer]
).success(
fn=lambda: {"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""}, outputs=[transcript]
)
if stt.streaming:
audio_input.stream(
stt.process_audio_chunk,
inputs=[audio_input, audio_buffer, transcript],
outputs=[transcript, audio_buffer, message],
show_progress="hidden",
)
audio_input.stop_recording(fn=lambda: gr.update(interactive=True), outputs=[send_btn])
else:
audio_input.stop_recording(fn=stt.speech_to_text_full, inputs=[audio_input], outputs=[message]).success(
fn=lambda: gr.update(interactive=True), outputs=[send_btn]
).success(fn=lambda: None, outputs=[audio_input])
demo.launch(show_api=False)
|