IbrahimHasani's picture
Update app.py
8d1f721
raw
history blame
3.85 kB
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
import cv2
# Constants
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
CLIP_LEN = 32
# Check for GPU and set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and processor
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(device).eval()
def get_video_length(file_path):
cap = cv2.VideoCapture(file_path)
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return length
def read_video_opencv(file_path, indices):
cap = cv2.VideoCapture(file_path)
frames = []
for idx in indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
cap.release()
return frames
def sample_uniform_frame_indices(clip_len, seg_len):
if seg_len < clip_len:
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
indices = np.arange(seg_len).tolist() * repeat_factor
indices = indices[:clip_len]
else:
spacing = seg_len // clip_len
indices = [i * spacing for i in range(clip_len)]
return np.array(indices).astype(np.int64)
def get_concatenation_layout(clip_len):
# Modify as needed for other clip lengths
if clip_len == 32:
return 4, 8
def concatenate_frames(frames, clip_len):
rows, cols = get_concatenation_layout(clip_len)
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
frame_iter = iter(frames)
y_offset = 0
for i in range(rows):
x_offset = 0
for j in range(cols):
img = Image.fromarray(next(frame_iter))
combined_image.paste(img, (x_offset, y_offset))
x_offset += frames[0].shape[1]
y_offset += frames[0].shape[0]
return combined_image
def model_interface(uploaded_video, activity):
video_length = get_video_length(uploaded_video)
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
video = read_video_opencv(uploaded_video, indices)
concatenated_image = concatenate_frames(video, CLIP_LEN)
activities_list = [activity, "other"]
inputs = processor(
text=activities_list,
videos=list(video),
return_tensors="pt",
padding=True,
).to(device) # Move inputs to GPU if available
with torch.no_grad():
outputs = model(**inputs)
logits_per_video = outputs.logits_per_video
probs = logits_per_video.softmax(dim=1)
results_probs = []
results_logits = []
max_prob_index = torch.argmax(probs[0]).item()
for i in range(len(activities_list)):
current_activity = activities_list[i]
prob = float(probs[0][i])
logit = float(logits_per_video[0][i])
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
likely_label = activities_list[max_prob_index]
likely_probability = float(probs[0][max_prob_index]) * 100
return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]
iface = gr.Interface(
fn=model_interface,
inputs=[
gr.components.Video(label="Upload a video file"),
gr.components.Textbox(default="dancing", label="Desired Activity to Recognize"),
],
outputs=[
gr.components.Image(type="pil", label="Sampled Frames"),
gr.components.Textbox(type="text", label="Probabilities"),
gr.components.Textbox(type="text", label="Raw Scores"),
gr.components.Textbox(type="text", label="Top Prediction")
],
live=False
)
iface.launch()