Spaces:
Runtime error
Runtime error
Commit
·
8d1f721
1
Parent(s):
a29b529
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,16 @@ from transformers import AutoProcessor, AutoModel
|
|
5 |
from PIL import Image
|
6 |
import cv2
|
7 |
|
|
|
8 |
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
|
9 |
CLIP_LEN = 32
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
model = AutoModel.from_pretrained(MODEL_NAME)
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
def get_video_length(file_path):
|
17 |
cap = cv2.VideoCapture(file_path)
|
@@ -22,8 +25,8 @@ def get_video_length(file_path):
|
|
22 |
def read_video_opencv(file_path, indices):
|
23 |
cap = cv2.VideoCapture(file_path)
|
24 |
frames = []
|
25 |
-
for
|
26 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES,
|
27 |
ret, frame = cap.read()
|
28 |
if ret:
|
29 |
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
@@ -40,11 +43,13 @@ def sample_uniform_frame_indices(clip_len, seg_len):
|
|
40 |
indices = [i * spacing for i in range(clip_len)]
|
41 |
return np.array(indices).astype(np.int64)
|
42 |
|
43 |
-
|
|
|
|
|
|
|
44 |
|
45 |
def concatenate_frames(frames, clip_len):
|
46 |
-
|
47 |
-
rows, cols = layout[clip_len]
|
48 |
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
|
49 |
frame_iter = iter(frames)
|
50 |
y_offset = 0
|
@@ -69,7 +74,7 @@ def model_interface(uploaded_video, activity):
|
|
69 |
videos=list(video),
|
70 |
return_tensors="pt",
|
71 |
padding=True,
|
72 |
-
)
|
73 |
|
74 |
with torch.no_grad():
|
75 |
outputs = model(**inputs)
|
|
|
5 |
from PIL import Image
|
6 |
import cv2
|
7 |
|
8 |
+
# Constants
|
9 |
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
|
10 |
CLIP_LEN = 32
|
11 |
|
12 |
+
# Check for GPU and set device
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
14 |
|
15 |
+
# Load model and processor
|
16 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
17 |
+
model = AutoModel.from_pretrained(MODEL_NAME).to(device).eval()
|
18 |
|
19 |
def get_video_length(file_path):
|
20 |
cap = cv2.VideoCapture(file_path)
|
|
|
25 |
def read_video_opencv(file_path, indices):
|
26 |
cap = cv2.VideoCapture(file_path)
|
27 |
frames = []
|
28 |
+
for idx in indices:
|
29 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
30 |
ret, frame = cap.read()
|
31 |
if ret:
|
32 |
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
|
|
43 |
indices = [i * spacing for i in range(clip_len)]
|
44 |
return np.array(indices).astype(np.int64)
|
45 |
|
46 |
+
def get_concatenation_layout(clip_len):
|
47 |
+
# Modify as needed for other clip lengths
|
48 |
+
if clip_len == 32:
|
49 |
+
return 4, 8
|
50 |
|
51 |
def concatenate_frames(frames, clip_len):
|
52 |
+
rows, cols = get_concatenation_layout(clip_len)
|
|
|
53 |
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
|
54 |
frame_iter = iter(frames)
|
55 |
y_offset = 0
|
|
|
74 |
videos=list(video),
|
75 |
return_tensors="pt",
|
76 |
padding=True,
|
77 |
+
).to(device) # Move inputs to GPU if available
|
78 |
|
79 |
with torch.no_grad():
|
80 |
outputs = model(**inputs)
|