Spaces:
Runtime error
Runtime error
File size: 4,028 Bytes
56de2d4 b8466ce f2ea5a0 10696ac 53189f9 f2ea5a0 2dc6183 f2ea5a0 a29b529 2dc6183 a29b529 a6c8793 56de2d4 2dc6183 56de2d4 f2ea5a0 56de2d4 53189f9 a29b529 53189f9 56de2d4 b8466ce 56de2d4 a29b529 56de2d4 2dc6183 2c5687c f2ea5a0 56de2d4 a23243f 56de2d4 b8466ce 56de2d4 b8466ce f2ea5a0 b8466ce 56de2d4 b8466ce f2ea5a0 56de2d4 2dc6183 1bc2256 d7eab74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
import cv2
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
CLIP_LEN = 32
# Check if GPU is available and set the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and processor once and move them to the device
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(device)
def get_video_length(file_path):
cap = cv2.VideoCapture(file_path)
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return length
def read_video_opencv(file_path, indices):
cap = cv2.VideoCapture(file_path)
frames = []
for i in indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if ret:
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
cap.release()
return frames
def sample_uniform_frame_indices(clip_len, seg_len):
if seg_len < clip_len:
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
indices = np.arange(seg_len).tolist() * repeat_factor
indices = indices[:clip_len]
else:
spacing = seg_len // clip_len
indices = [i * spacing for i in range(clip_len)]
return np.array(indices).astype(np.int64)
def concatenate_frames(frames, clip_len):
layout = { 32: (4, 8) }
rows, cols = layout[clip_len]
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
frame_iter = iter(frames)
y_offset = 0
for i in range(rows):
x_offset = 0
for j in range(cols):
img = Image.fromarray(next(frame_iter))
combined_image.paste(img, (x_offset, y_offset))
x_offset += frames[0].shape[1]
y_offset += frames[0].shape[0]
return combined_image
def model_interface(uploaded_video, activity):
video_length = get_video_length(uploaded_video)
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
video = read_video_opencv(uploaded_video, indices)
concatenated_image = concatenate_frames(video, CLIP_LEN)
activities_list = [activity, "other"]
inputs = processor(
text=activities_list,
videos=list(video),
return_tensors="pt",
padding=True,
)
# Move the tensors to the same device as the model
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
inputs[key] = value.to(device)
with torch.no_grad():
outputs = model(**inputs)
logits_per_video = outputs.logits_per_video
probs = logits_per_video.softmax(dim=1)
results_probs = []
results_logits = []
max_prob_index = torch.argmax(probs[0]).item()
for i in range(len(activities_list)):
current_activity = activities_list[i]
prob = float(probs[0][i].cpu()) # Move tensor data to CPU for further processing
logit = float(logits_per_video[0][i].cpu()) # Move tensor data to CPU for further processing
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
likely_label = activities_list[max_prob_index]
likely_probability = float(probs[0][max_prob_index].cpu()) * 100 # Move tensor data to CPU
return concatenated_image, results_probs, results_logits, [likely_label, likely_probability]
iface = gr.Interface(
fn=model_interface,
inputs=[
gr.components.Video(label="Upload a video file"),
gr.components.Textbox(default="dancing", label="Desired Activity to Recognize"),
],
outputs=[
gr.components.Image(type="pil", label="Sampled Frames"),
gr.components.Textbox(type="text", label="Probabilities"),
gr.components.Textbox(type="text", label="Raw Scores"),
gr.components.Textbox(type="text", label="Top Prediction")
],
live=False
)
iface.launch()
|