Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						b8466ce
	
1
								Parent(s):
							
							4ffad60
								
Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,21 +1,17 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import torch
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 3 |  | 
| 4 | 
             
            print(f"Is CUDA available: {torch.cuda.is_available()}")
         | 
| 5 | 
             
            # True
         | 
| 6 | 
             
            print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
         | 
| 7 | 
             
            # Tesla T4
         | 
| 8 |  | 
| 9 | 
            -
            import numpy as np
         | 
| 10 | 
            -
            from transformers import AutoProcessor, AutoModel
         | 
| 11 | 
            -
            from PIL import Image
         | 
| 12 | 
            -
            from decord import VideoReader, gpu
         | 
| 13 | 
            -
             | 
| 14 | 
             
            def sample_uniform_frame_indices(clip_len, seg_len):
         | 
| 15 | 
            -
                """
         | 
| 16 | 
            -
                Samples `clip_len` uniformly spaced frame indices from a video of length `seg_len`.
         | 
| 17 | 
            -
                Handles edge cases where `seg_len` might be less than `clip_len`.
         | 
| 18 | 
            -
                """
         | 
| 19 | 
             
                if seg_len < clip_len:
         | 
| 20 | 
             
                    repeat_factor = np.ceil(clip_len / seg_len).astype(int)
         | 
| 21 | 
             
                    indices = np.arange(seg_len).tolist() * repeat_factor
         | 
| @@ -23,24 +19,32 @@ def sample_uniform_frame_indices(clip_len, seg_len): | |
| 23 | 
             
                else:
         | 
| 24 | 
             
                    spacing = seg_len // clip_len
         | 
| 25 | 
             
                    indices = [i * spacing for i in range(clip_len)]
         | 
| 26 | 
            -
                
         | 
| 27 | 
             
                return np.array(indices).astype(np.int64)
         | 
| 28 |  | 
| 29 | 
             
            def read_video_decord(file_path, indices):
         | 
| 30 | 
            -
                vr = VideoReader(file_path, num_threads=1, ctx= | 
| 31 | 
             
                video = vr.get_batch(indices).asnumpy()
         | 
| 32 | 
             
                return video
         | 
| 33 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 34 | 
             
            def concatenate_frames(frames, clip_len):
         | 
| 35 | 
            -
                assert len(frames) == clip_len, f"The function expects {clip_len} frames as input."
         | 
| 36 | 
            -
                
         | 
| 37 | 
             
                layout = {
         | 
| 38 | 
             
                    32: (4, 8),
         | 
| 39 | 
             
                    16: (4, 4),
         | 
| 40 | 
             
                    8:  (2, 4)
         | 
| 41 | 
             
                }
         | 
| 42 | 
             
                rows, cols = layout[clip_len]
         | 
| 43 | 
            -
                
         | 
| 44 | 
             
                combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
         | 
| 45 | 
             
                frame_iter = iter(frames)
         | 
| 46 | 
             
                y_offset = 0
         | 
| @@ -51,26 +55,22 @@ def concatenate_frames(frames, clip_len): | |
| 51 | 
             
                        combined_image.paste(img, (x_offset, y_offset))
         | 
| 52 | 
             
                        x_offset += frames[0].shape[1]
         | 
| 53 | 
             
                    y_offset += frames[0].shape[0]
         | 
| 54 | 
            -
                    
         | 
| 55 | 
             
                return combined_image
         | 
| 56 |  | 
| 57 | 
            -
             | 
| 58 | 
            -
            def model_interface(uploaded_video, model_choice, activities):
         | 
| 59 | 
             
                clip_len = {
         | 
| 60 | 
             
                    "microsoft/xclip-base-patch16-zero-shot": 32,
         | 
| 61 | 
             
                    "microsoft/xclip-base-patch32-16-frames": 16,
         | 
| 62 | 
             
                    "microsoft/xclip-base-patch32": 8
         | 
| 63 | 
             
                }.get(model_choice, 32)
         | 
| 64 | 
            -
                
         | 
| 65 | 
             
                indices = sample_uniform_frame_indices(clip_len, seg_len=len(VideoReader(uploaded_video)))
         | 
| 66 | 
            -
                video =  | 
| 67 | 
            -
                concatenated_image = concatenate_frames(video, clip_len) | 
| 68 |  | 
|  | |
|  | |
| 69 | 
             
                processor = AutoProcessor.from_pretrained(model_choice)
         | 
| 70 | 
             
                model = AutoModel.from_pretrained(model_choice)
         | 
| 71 | 
            -
                model = model.to("cuda")
         | 
| 72 | 
            -
                
         | 
| 73 | 
            -
                activities_list = activities.split(",")
         | 
| 74 | 
             
                inputs = processor(
         | 
| 75 | 
             
                    text=activities_list,
         | 
| 76 | 
             
                    videos=list(video),
         | 
| @@ -86,19 +86,18 @@ def model_interface(uploaded_video, model_choice, activities): | |
| 86 |  | 
| 87 | 
             
                results_probs = []
         | 
| 88 | 
             
                results_logits = []
         | 
|  | |
| 89 | 
             
                for i in range(len(activities_list)):
         | 
| 90 | 
            -
                     | 
| 91 | 
             
                    prob = float(probs[0][i])
         | 
| 92 | 
             
                    logit = float(logits_per_video[0][i])
         | 
| 93 | 
            -
                    results_probs.append(( | 
| 94 | 
            -
                    results_logits.append(( | 
| 95 |  | 
| 96 | 
            -
                 | 
| 97 | 
            -
                 | 
| 98 | 
            -
                most_likely_activity = activities_list[max_prob_idx]
         | 
| 99 | 
            -
                most_likely_prob = float(probs[0][max_prob_idx])
         | 
| 100 |  | 
| 101 | 
            -
                return concatenated_image, results_probs, results_logits,  | 
| 102 |  | 
| 103 | 
             
            iface = gr.Interface(
         | 
| 104 | 
             
                fn=model_interface,
         | 
| @@ -109,15 +108,15 @@ iface = gr.Interface( | |
| 109 | 
             
                        "microsoft/xclip-base-patch32-16-frames",
         | 
| 110 | 
             
                        "microsoft/xclip-base-patch32"
         | 
| 111 | 
             
                    ], label="Model Choice"),
         | 
| 112 | 
            -
                    gr.components.Textbox( | 
| 113 | 
             
                ],
         | 
| 114 | 
             
                outputs=[
         | 
| 115 | 
            -
                    gr.components.Image(type="pil", label=" | 
| 116 | 
             
                    gr.components.Textbox(type="text", label="Probabilities"),
         | 
| 117 | 
             
                    gr.components.Textbox(type="text", label="Raw Scores"),
         | 
| 118 | 
            -
                    gr.components.Textbox(type="text", label=" | 
| 119 | 
             
                ],
         | 
| 120 | 
             
                live=False
         | 
| 121 | 
             
            )
         | 
| 122 |  | 
| 123 | 
            -
            iface.launch()
         | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import torch
         | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
            +
            from transformers import AutoProcessor, AutoModel
         | 
| 5 | 
            +
            from PIL import Image
         | 
| 6 | 
            +
            from decord import VideoReader, cpu
         | 
| 7 | 
            +
            import cv2
         | 
| 8 |  | 
| 9 | 
             
            print(f"Is CUDA available: {torch.cuda.is_available()}")
         | 
| 10 | 
             
            # True
         | 
| 11 | 
             
            print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
         | 
| 12 | 
             
            # Tesla T4
         | 
| 13 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 14 | 
             
            def sample_uniform_frame_indices(clip_len, seg_len):
         | 
|  | |
|  | |
|  | |
|  | |
| 15 | 
             
                if seg_len < clip_len:
         | 
| 16 | 
             
                    repeat_factor = np.ceil(clip_len / seg_len).astype(int)
         | 
| 17 | 
             
                    indices = np.arange(seg_len).tolist() * repeat_factor
         | 
|  | |
| 19 | 
             
                else:
         | 
| 20 | 
             
                    spacing = seg_len // clip_len
         | 
| 21 | 
             
                    indices = [i * spacing for i in range(clip_len)]
         | 
|  | |
| 22 | 
             
                return np.array(indices).astype(np.int64)
         | 
| 23 |  | 
| 24 | 
             
            def read_video_decord(file_path, indices):
         | 
| 25 | 
            +
                vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
         | 
| 26 | 
             
                video = vr.get_batch(indices).asnumpy()
         | 
| 27 | 
             
                return video
         | 
| 28 |  | 
| 29 | 
            +
            def read_video_opencv(file_path, indices):
         | 
| 30 | 
            +
                vidcap = cv2.VideoCapture(file_path)
         | 
| 31 | 
            +
                frames = []
         | 
| 32 | 
            +
                for idx in indices:
         | 
| 33 | 
            +
                    vidcap.set(cv2.CAP_PROP_POS_FRAMES, idx)
         | 
| 34 | 
            +
                    success, image = vidcap.read()
         | 
| 35 | 
            +
                    if success:
         | 
| 36 | 
            +
                        # Convert BGR to RGB
         | 
| 37 | 
            +
                        frames.append(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
         | 
| 38 | 
            +
                return np.array(frames)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
             
            def concatenate_frames(frames, clip_len):
         | 
|  | |
|  | |
| 42 | 
             
                layout = {
         | 
| 43 | 
             
                    32: (4, 8),
         | 
| 44 | 
             
                    16: (4, 4),
         | 
| 45 | 
             
                    8:  (2, 4)
         | 
| 46 | 
             
                }
         | 
| 47 | 
             
                rows, cols = layout[clip_len]
         | 
|  | |
| 48 | 
             
                combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
         | 
| 49 | 
             
                frame_iter = iter(frames)
         | 
| 50 | 
             
                y_offset = 0
         | 
|  | |
| 55 | 
             
                        combined_image.paste(img, (x_offset, y_offset))
         | 
| 56 | 
             
                        x_offset += frames[0].shape[1]
         | 
| 57 | 
             
                    y_offset += frames[0].shape[0]
         | 
|  | |
| 58 | 
             
                return combined_image
         | 
| 59 |  | 
| 60 | 
            +
            def model_interface(uploaded_video, model_choice, activity):
         | 
|  | |
| 61 | 
             
                clip_len = {
         | 
| 62 | 
             
                    "microsoft/xclip-base-patch16-zero-shot": 32,
         | 
| 63 | 
             
                    "microsoft/xclip-base-patch32-16-frames": 16,
         | 
| 64 | 
             
                    "microsoft/xclip-base-patch32": 8
         | 
| 65 | 
             
                }.get(model_choice, 32)
         | 
|  | |
| 66 | 
             
                indices = sample_uniform_frame_indices(clip_len, seg_len=len(VideoReader(uploaded_video)))
         | 
| 67 | 
            +
                video = read_video_opencv(uploaded_video, indices)
         | 
| 68 | 
            +
                concatenated_image = concatenate_frames(video, clip_len)
         | 
| 69 |  | 
| 70 | 
            +
                # Appending "other" to the list of activities
         | 
| 71 | 
            +
                activities_list = [activity, "other"]
         | 
| 72 | 
             
                processor = AutoProcessor.from_pretrained(model_choice)
         | 
| 73 | 
             
                model = AutoModel.from_pretrained(model_choice)
         | 
|  | |
|  | |
|  | |
| 74 | 
             
                inputs = processor(
         | 
| 75 | 
             
                    text=activities_list,
         | 
| 76 | 
             
                    videos=list(video),
         | 
|  | |
| 86 |  | 
| 87 | 
             
                results_probs = []
         | 
| 88 | 
             
                results_logits = []
         | 
| 89 | 
            +
                max_prob_index = torch.argmax(probs[0]).item()
         | 
| 90 | 
             
                for i in range(len(activities_list)):
         | 
| 91 | 
            +
                    current_activity = activities_list[i]
         | 
| 92 | 
             
                    prob = float(probs[0][i])
         | 
| 93 | 
             
                    logit = float(logits_per_video[0][i])
         | 
| 94 | 
            +
                    results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
         | 
| 95 | 
            +
                    results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
         | 
| 96 |  | 
| 97 | 
            +
                likely_label = activities_list[max_prob_index]
         | 
| 98 | 
            +
                likely_probability = float(probs[0][max_prob_index]) * 100
         | 
|  | |
|  | |
| 99 |  | 
| 100 | 
            +
                return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]
         | 
| 101 |  | 
| 102 | 
             
            iface = gr.Interface(
         | 
| 103 | 
             
                fn=model_interface,
         | 
|  | |
| 108 | 
             
                        "microsoft/xclip-base-patch32-16-frames",
         | 
| 109 | 
             
                        "microsoft/xclip-base-patch32"
         | 
| 110 | 
             
                    ], label="Model Choice"),
         | 
| 111 | 
            +
                    gr.components.Textbox(default="dancing", label="Desired Activity to Recognize"),
         | 
| 112 | 
             
                ],
         | 
| 113 | 
             
                outputs=[
         | 
| 114 | 
            +
                    gr.components.Image(type="pil", label="Sampled Frames"),
         | 
| 115 | 
             
                    gr.components.Textbox(type="text", label="Probabilities"),
         | 
| 116 | 
             
                    gr.components.Textbox(type="text", label="Raw Scores"),
         | 
| 117 | 
            +
                    gr.components.Textbox(type="text", label="Top Prediction")
         | 
| 118 | 
             
                ],
         | 
| 119 | 
             
                live=False
         | 
| 120 | 
             
            )
         | 
| 121 |  | 
| 122 | 
            +
            iface.launch()
         |