File size: 4,037 Bytes
56de2d4
 
b8466ce
 
 
f2ea5a0
10696ac
53189f9
 
 
f2ea5a0
 
2dc6183
f2ea5a0
 
 
a29b529
 
 
 
 
 
 
 
 
 
2dc6183
 
a29b529
 
 
 
 
a6c8793
56de2d4
 
 
 
 
 
 
 
 
 
 
2dc6183
 
56de2d4
 
 
 
 
 
f2ea5a0
56de2d4
 
 
 
 
53189f9
a29b529
 
 
53189f9
56de2d4
b8466ce
56de2d4
 
a29b529
56de2d4
 
2dc6183
2c5687c
f2ea5a0
 
 
 
 
56de2d4
 
 
a23243f
56de2d4
 
 
 
b8466ce
56de2d4
b8466ce
f2ea5a0
 
b8466ce
 
56de2d4
b8466ce
f2ea5a0
56de2d4
2dc6183
1bc2256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f244820
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
import cv2 

MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
CLIP_LEN = 32

# Check if GPU is available and set the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load model and processor once and move them to the device
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(device)

def get_video_length(file_path):
    cap = cv2.VideoCapture(file_path)
    length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cap.release()
    return length

def read_video_opencv(file_path, indices):
    cap = cv2.VideoCapture(file_path)
    frames = []
    for i in indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = cap.read()
        if ret:
            frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    cap.release()
    return frames

def sample_uniform_frame_indices(clip_len, seg_len):
    if seg_len < clip_len:
        repeat_factor = np.ceil(clip_len / seg_len).astype(int)
        indices = np.arange(seg_len).tolist() * repeat_factor
        indices = indices[:clip_len]
    else:
        spacing = seg_len // clip_len
        indices = [i * spacing for i in range(clip_len)]
    return np.array(indices).astype(np.int64)

def concatenate_frames(frames, clip_len):
    layout = { 32: (4, 8) }
    rows, cols = layout[clip_len]
    combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
    frame_iter = iter(frames)
    y_offset = 0
    for i in range(rows):
        x_offset = 0
        for j in range(cols):
            img = Image.fromarray(next(frame_iter))
            combined_image.paste(img, (x_offset, y_offset))
            x_offset += frames[0].shape[1]
        y_offset += frames[0].shape[0]
    return combined_image

def model_interface(uploaded_video, activity):
    video_length = get_video_length(uploaded_video)
    indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
    video = read_video_opencv(uploaded_video, indices)
    concatenated_image = concatenate_frames(video, CLIP_LEN)

    activities_list = [activity, "other"]
    inputs = processor(
        text=activities_list,
        videos=list(video),
        return_tensors="pt",
        padding=True,
    )

    # Move the tensors to the same device as the model
    for key, value in inputs.items():
        if isinstance(value, torch.Tensor):
            inputs[key] = value.to(device)

    with torch.no_grad():
        outputs = model(**inputs)

    logits_per_video = outputs.logits_per_video
    probs = logits_per_video.softmax(dim=1)

    results_probs = []
    results_logits = []
    max_prob_index = torch.argmax(probs[0]).item()
    for i in range(len(activities_list)):
        current_activity = activities_list[i]
        prob = float(probs[0][i].cpu())  # Move tensor data to CPU for further processing
        logit = float(logits_per_video[0][i].cpu())  # Move tensor data to CPU for further processing
        results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
        results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))

    likely_label = activities_list[max_prob_index]
    likely_probability = float(probs[0][max_prob_index].cpu()) * 100  # Move tensor data to CPU

    return concatenated_image, results_probs, results_logits, [likely_label, likely_probability]

iface = gr.Interface(
    fn=model_interface,
    inputs=[
        gr.components.Video(label="Upload a video file"),
        gr.components.Textbox(default="dancing", label="Desired Activity to Recognize"),
    ],
    outputs=[
        gr.components.Image(type="pil", label="Sampled Frames"),
        gr.components.Textbox(type="text", label="Probabilities"),
        gr.components.Textbox(type="text", label="Raw Scores"),
        gr.components.Textbox(type="text", label="Top Prediction")
    ],
    live=False
)

iface.launch(share=True)