File size: 3,677 Bytes
56de2d4
 
b8466ce
 
 
a23243f
10696ac
56de2d4
 
 
 
 
 
 
 
 
 
 
a23243f
56de2d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8466ce
56de2d4
 
 
 
 
 
c09b2c5
b8466ce
56de2d4
a23243f
b8466ce
56de2d4
a23243f
56de2d4
 
a23243f
56de2d4
 
 
 
 
 
 
a23243f
56de2d4
 
 
 
b8466ce
56de2d4
b8466ce
56de2d4
 
b8466ce
 
56de2d4
b8466ce
 
56de2d4
a23243f
1bc2256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a23243f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
from decord import VideoReader, cpu

def sample_uniform_frame_indices(clip_len, seg_len):
    if seg_len < clip_len:
        repeat_factor = np.ceil(clip_len / seg_len).astype(int)
        indices = np.arange(seg_len).tolist() * repeat_factor
        indices = indices[:clip_len]
    else:
        spacing = seg_len // clip_len
        indices = [i * spacing for i in range(clip_len)]
    return np.array(indices).astype(np.int64)

def read_video_decord(file_path, indices):
    vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
    video = vr.get_batch(indices).asnumpy()
    return video

def concatenate_frames(frames, clip_len):
    layout = {
        32: (4, 8),
        16: (4, 4),
        8:  (2, 4)
    }
    rows, cols = layout[clip_len]
    combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
    frame_iter = iter(frames)
    y_offset = 0
    for i in range(rows):
        x_offset = 0
        for j in range(cols):
            img = Image.fromarray(next(frame_iter))
            combined_image.paste(img, (x_offset, y_offset))
            x_offset += frames[0].shape[1]
        y_offset += frames[0].shape[0]
    return combined_image

def model_interface(uploaded_video, model_choice, activity):
    clip_len = {
        "microsoft/xclip-base-patch16-zero-shot": 32,
        "microsoft/xclip-base-patch32-16-frames": 16,
        "microsoft/xclip-base-patch32": 8
    }.get(model_choice, 32)
    indices = sample_uniform_frame_indices(clip_len, seg_len=len(VideoReader(uploaded_video)))
    video = read_video_decord(uploaded_video, indices)
    concatenated_image = concatenate_frames(video, clip_len)

    # Appending "other" to the list of activities
    activities_list = [activity, "other"]
    processor = AutoProcessor.from_pretrained(model_choice)
    model = AutoModel.from_pretrained(model_choice)
    inputs = processor(
        text=activities_list,
        videos=list(video),
        return_tensors="pt",
        padding=True,
    )

    with torch.no_grad():
        outputs = model(**inputs)

    logits_per_video = outputs.logits_per_video
    probs = logits_per_video.softmax(dim=1)

    results_probs = []
    results_logits = []
    max_prob_index = torch.argmax(probs[0]).item()
    for i in range(len(activities_list)):
        current_activity = activities_list[i]
        prob = float(probs[0][i])
        logit = float(logits_per_video[0][i])
        results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
        results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))

    likely_label = activities_list[max_prob_index]
    likely_probability = float(probs[0][max_prob_index]) * 100

    return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]

iface = gr.Interface(
    fn=model_interface,
    inputs=[
        gr.components.Video(label="Upload a video file"),
        gr.components.Dropdown(choices=[
            "microsoft/xclip-base-patch16-zero-shot",
            "microsoft/xclip-base-patch32-16-frames",
            "microsoft/xclip-base-patch32"
        ], label="Model Choice"),
        gr.components.Textbox(default="dancing", label="Desired Activity to Recognize"),
    ],
    outputs=[
        gr.components.Image(type="pil", label="Sampled Frames"),
        gr.components.Textbox(type="text", label="Probabilities"),
        gr.components.Textbox(type="text", label="Raw Scores"),
        gr.components.Textbox(type="text", label="Top Prediction")
    ],
    live=False
)

iface.launch()