Ibraaheem commited on
Commit
f15c12f
·
verified ·
1 Parent(s): 17cc6ac

Update private_gpt/server/completions/completions_router.py

Browse files
private_gpt/server/completions/completions_router.py CHANGED
@@ -36,92 +36,51 @@ class CompletionsBody(BaseModel):
36
  }
37
 
38
 
39
- # @completions_router.post(
40
- # "/completions",
41
- # response_model=None,
42
- # summary="Completion",
43
- # responses={200: {"model": OpenAICompletion}},
44
- # tags=["Contextual Completions"],
45
- # )
46
- # def prompt_completion(
47
- # request: Request, body: CompletionsBody
48
- # ) -> OpenAICompletion | StreamingResponse:
49
- # """We recommend most users use our Chat completions API.
50
 
51
- # Given a prompt, the model will return one predicted completion.
52
 
53
- # Optionally include a `system_prompt` to influence the way the LLM answers.
54
 
55
- # If `use_context`
56
- # is set to `true`, the model will use context coming from the ingested documents
57
- # to create the response. The documents being used can be filtered using the
58
- # `context_filter` and passing the document IDs to be used. Ingested documents IDs
59
- # can be found using `/ingest/list` endpoint. If you want all ingested documents to
60
- # be used, remove `context_filter` altogether.
61
 
62
- # When using `'include_sources': true`, the API will return the source Chunks used
63
- # to create the response, which come from the context provided.
64
 
65
- # When using `'stream': true`, the API will return data chunks following [OpenAI's
66
- # streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
67
- # ```
68
- # {"id":"12345","object":"completion.chunk","created":1694268190,
69
- # "model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
70
- # "finish_reason":null}]}
71
- # ```
72
- # """
73
- # messages = [OpenAIMessage(content=body.prompt, role="user")]
74
- # # If system prompt is passed, create a fake message with the system prompt.
75
- # if body.system_prompt:
76
- # messages.insert(0, OpenAIMessage(content=body.system_prompt, role="system"))
77
 
78
- # chat_body = ChatBody(
79
- # messages=messages,
80
- # use_context=body.use_context,
81
- # stream=body.stream,
82
- # include_sources=body.include_sources,
83
- # context_filter=body.context_filter,
84
- # )
85
- # return chat_completion(request, chat_body)
86
 
87
- @chat_router.post(
88
- "/chat/completions",
89
- response_model=None,
90
- responses={200: {"model": OpenAICompletion}},
91
- tags=["Contextual Completions"],
92
- )
93
- def chat_completion(
94
- request: Request, body: ChatBody
95
- ) -> OpenAICompletion | StreamingResponse:
96
- """Given a list of messages comprising a conversation, return a response."""
97
- try:
98
- service = request.state.injector.get(ChatService)
99
- all_messages = [
100
- ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
101
- ]
102
- if body.stream:
103
- completion_gen = service.stream_chat(
104
- messages=all_messages,
105
- use_context=body.use_context,
106
- context_filter=body.context_filter,
107
- )
108
- return StreamingResponse(
109
- to_openai_sse_stream(
110
- completion_gen.response,
111
- completion_gen.sources if body.include_sources else None,
112
- ),
113
- media_type="text/event-stream",
114
- )
115
- else:
116
- completion = service.chat(
117
- messages=all_messages,
118
- use_context=body.use_context,
119
- context_filter=body.context_filter,
120
- )
121
- return to_openai_response(
122
- completion.response, completion.sources if body.include_sources else None
123
- )
124
- except Exception as e:
125
- # Log the exception details for debugging
126
- print(f"Error processing chat completion: {e}")
127
- return {"error": {"message": "Internal server error"}}
 
36
  }
37
 
38
 
39
+ @completions_router.post(
40
+ "/completions",
41
+ response_model=None,
42
+ summary="Completion",
43
+ responses={200: {"model": OpenAICompletion}},
44
+ tags=["Contextual Completions"],
45
+ )
46
+ def prompt_completion(
47
+ request: Request, body: CompletionsBody
48
+ ) -> OpenAICompletion | StreamingResponse:
49
+ """We recommend most users use our Chat completions API.
50
 
51
+ Given a prompt, the model will return one predicted completion.
52
 
53
+ Optionally include a `system_prompt` to influence the way the LLM answers.
54
 
55
+ If `use_context`
56
+ is set to `true`, the model will use context coming from the ingested documents
57
+ to create the response. The documents being used can be filtered using the
58
+ `context_filter` and passing the document IDs to be used. Ingested documents IDs
59
+ can be found using `/ingest/list` endpoint. If you want all ingested documents to
60
+ be used, remove `context_filter` altogether.
61
 
62
+ When using `'include_sources': true`, the API will return the source Chunks used
63
+ to create the response, which come from the context provided.
64
 
65
+ When using `'stream': true`, the API will return data chunks following [OpenAI's
66
+ streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
67
+ ```
68
+ {"id":"12345","object":"completion.chunk","created":1694268190,
69
+ "model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
70
+ "finish_reason":null}]}
71
+ ```
72
+ """
73
+ messages = [OpenAIMessage(content=body.prompt, role="user")]
74
+ # If system prompt is passed, create a fake message with the system prompt.
75
+ if body.system_prompt:
76
+ messages.insert(0, OpenAIMessage(content=body.system_prompt, role="system"))
77
 
78
+ chat_body = ChatBody(
79
+ messages=messages,
80
+ use_context=body.use_context,
81
+ stream=body.stream,
82
+ include_sources=body.include_sources,
83
+ context_filter=body.context_filter,
84
+ )
85
+ return chat_completion(request, chat_body)
86