Ibraaheem commited on
Commit
17cc6ac
·
verified ·
1 Parent(s): fbf4ef8

Update private_gpt/server/completions/completions_router.py

Browse files
private_gpt/server/completions/completions_router.py CHANGED
@@ -36,50 +36,92 @@ class CompletionsBody(BaseModel):
36
  }
37
 
38
 
39
- @completions_router.post(
40
- "/completions",
41
- response_model=None,
42
- summary="Completion",
43
- responses={200: {"model": OpenAICompletion}},
44
- tags=["Contextual Completions"],
45
- )
46
- def prompt_completion(
47
- request: Request, body: CompletionsBody
48
- ) -> OpenAICompletion | StreamingResponse:
49
- """We recommend most users use our Chat completions API.
 
 
50
 
51
- Given a prompt, the model will return one predicted completion.
52
 
53
- Optionally include a `system_prompt` to influence the way the LLM answers.
 
 
 
 
 
54
 
55
- If `use_context`
56
- is set to `true`, the model will use context coming from the ingested documents
57
- to create the response. The documents being used can be filtered using the
58
- `context_filter` and passing the document IDs to be used. Ingested documents IDs
59
- can be found using `/ingest/list` endpoint. If you want all ingested documents to
60
- be used, remove `context_filter` altogether.
61
 
62
- When using `'include_sources': true`, the API will return the source Chunks used
63
- to create the response, which come from the context provided.
 
 
 
 
 
 
 
 
 
 
64
 
65
- When using `'stream': true`, the API will return data chunks following [OpenAI's
66
- streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
67
- ```
68
- {"id":"12345","object":"completion.chunk","created":1694268190,
69
- "model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
70
- "finish_reason":null}]}
71
- ```
72
- """
73
- messages = [OpenAIMessage(content=body.prompt, role="user")]
74
- # If system prompt is passed, create a fake message with the system prompt.
75
- if body.system_prompt:
76
- messages.insert(0, OpenAIMessage(content=body.system_prompt, role="system"))
77
 
78
- chat_body = ChatBody(
79
- messages=messages,
80
- use_context=body.use_context,
81
- stream=body.stream,
82
- include_sources=body.include_sources,
83
- context_filter=body.context_filter,
84
- )
85
- return chat_completion(request, chat_body)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  }
37
 
38
 
39
+ # @completions_router.post(
40
+ # "/completions",
41
+ # response_model=None,
42
+ # summary="Completion",
43
+ # responses={200: {"model": OpenAICompletion}},
44
+ # tags=["Contextual Completions"],
45
+ # )
46
+ # def prompt_completion(
47
+ # request: Request, body: CompletionsBody
48
+ # ) -> OpenAICompletion | StreamingResponse:
49
+ # """We recommend most users use our Chat completions API.
50
+
51
+ # Given a prompt, the model will return one predicted completion.
52
 
53
+ # Optionally include a `system_prompt` to influence the way the LLM answers.
54
 
55
+ # If `use_context`
56
+ # is set to `true`, the model will use context coming from the ingested documents
57
+ # to create the response. The documents being used can be filtered using the
58
+ # `context_filter` and passing the document IDs to be used. Ingested documents IDs
59
+ # can be found using `/ingest/list` endpoint. If you want all ingested documents to
60
+ # be used, remove `context_filter` altogether.
61
 
62
+ # When using `'include_sources': true`, the API will return the source Chunks used
63
+ # to create the response, which come from the context provided.
 
 
 
 
64
 
65
+ # When using `'stream': true`, the API will return data chunks following [OpenAI's
66
+ # streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
67
+ # ```
68
+ # {"id":"12345","object":"completion.chunk","created":1694268190,
69
+ # "model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
70
+ # "finish_reason":null}]}
71
+ # ```
72
+ # """
73
+ # messages = [OpenAIMessage(content=body.prompt, role="user")]
74
+ # # If system prompt is passed, create a fake message with the system prompt.
75
+ # if body.system_prompt:
76
+ # messages.insert(0, OpenAIMessage(content=body.system_prompt, role="system"))
77
 
78
+ # chat_body = ChatBody(
79
+ # messages=messages,
80
+ # use_context=body.use_context,
81
+ # stream=body.stream,
82
+ # include_sources=body.include_sources,
83
+ # context_filter=body.context_filter,
84
+ # )
85
+ # return chat_completion(request, chat_body)
 
 
 
 
86
 
87
+ @chat_router.post(
88
+ "/chat/completions",
89
+ response_model=None,
90
+ responses={200: {"model": OpenAICompletion}},
91
+ tags=["Contextual Completions"],
92
+ )
93
+ def chat_completion(
94
+ request: Request, body: ChatBody
95
+ ) -> OpenAICompletion | StreamingResponse:
96
+ """Given a list of messages comprising a conversation, return a response."""
97
+ try:
98
+ service = request.state.injector.get(ChatService)
99
+ all_messages = [
100
+ ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
101
+ ]
102
+ if body.stream:
103
+ completion_gen = service.stream_chat(
104
+ messages=all_messages,
105
+ use_context=body.use_context,
106
+ context_filter=body.context_filter,
107
+ )
108
+ return StreamingResponse(
109
+ to_openai_sse_stream(
110
+ completion_gen.response,
111
+ completion_gen.sources if body.include_sources else None,
112
+ ),
113
+ media_type="text/event-stream",
114
+ )
115
+ else:
116
+ completion = service.chat(
117
+ messages=all_messages,
118
+ use_context=body.use_context,
119
+ context_filter=body.context_filter,
120
+ )
121
+ return to_openai_response(
122
+ completion.response, completion.sources if body.include_sources else None
123
+ )
124
+ except Exception as e:
125
+ # Log the exception details for debugging
126
+ print(f"Error processing chat completion: {e}")
127
+ return {"error": {"message": "Internal server error"}}