LayerAnimate / lvdm /utils.py
YuxueYang
Upload demo
2a59fa8
raw
history blame
16.2 kB
import importlib
import numpy as np
import cv2
import torch
import torch.distributed as dist
import os
from einops import rearrange
import imageio
import torchvision
from PIL import Image
import io
from matplotlib import pyplot as plt
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
COLORWHEEL = torch.zeros((RY + YG + GC + CB + BM + MR, 3))
col = 0
# RY
COLORWHEEL[0:RY, 0] = 255
COLORWHEEL[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
col = col + RY
# YG
COLORWHEEL[col:col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
COLORWHEEL[col:col + YG, 1] = 255
col = col + YG
# GC
COLORWHEEL[col:col + GC, 1] = 255
COLORWHEEL[col:col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
col = col + GC
# CB
COLORWHEEL[col:col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
COLORWHEEL[col:col + CB, 2] = 255
col = col + CB
# BM
COLORWHEEL[col:col + BM, 2] = 255
COLORWHEEL[col:col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
col = col + BM
# MR
COLORWHEEL[col:col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
COLORWHEEL[col:col + MR, 0] = 255
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
return total_params
def check_istarget(name, para_list):
"""
name: full name of source para
para_list: partial name of target para
"""
istarget=False
for para in para_list:
if para in name:
return True
return istarget
def instantiate_from_config(config):
if not "target" in config:
if config == '__is_first_stage__':
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def load_npz_from_dir(data_dir):
data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)]
data = np.concatenate(data, axis=0)
return data
def load_npz_from_paths(data_paths):
data = [np.load(data_path)['arr_0'] for data_path in data_paths]
data = np.concatenate(data, axis=0)
return data
def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
h, w = image.shape[:2]
if resize_short_edge is not None:
k = resize_short_edge / min(h, w)
else:
k = max_resolution / (h * w)
k = k**0.5
h = int(np.round(h * k / 64)) * 64
w = int(np.round(w * k / 64)) * 64
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
return image
def setup_dist(args):
if dist.is_initialized():
return
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
'nccl',
init_method='env://'
)
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def save_images_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6):
videos = rearrange(videos, "b c t h w -> t b c h w")
os.makedirs(path, exist_ok=True)
for time_idx, x in enumerate(videos):
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
image = Image.fromarray(x)
image.save(os.path.join(path, f"{time_idx:04d}.png"))
def save_image_with_mask(image: torch.Tensor, masks: torch.Tensor, path: str, rescale=False, alpha=0.6):
# image: [C, H, W], mask: [N, H, W]
os.makedirs(os.path.dirname(path), exist_ok=True)
image = rearrange(image, "c h w -> h w c")
if rescale:
image = (image + 1.0) / 2.0 # -1,1 -> 0,1
image = (image * 255).numpy().astype(np.uint8)
final_image = Image.fromarray(image).convert("RGBA")
cmap = plt.get_cmap("tab20c")
masks = masks.cpu().numpy().astype(np.float32)
for i, img in enumerate(masks):
mask_color = np.array([*cmap(i * 4 + 2)[:3], alpha])
mask = img[:,:,None] * mask_color[None,None,:] * 255
mask = mask.astype(np.uint8)
mask = Image.fromarray(mask).convert("RGBA")
final_image = Image.alpha_composite(final_image, mask)
final_image.save(path)
def save_videos_with_heatmap(videos: torch.Tensor, trajectory: torch.Tensor, path: str, n_rows=6, fps=8):
# use Image RGBA and alpha_composite to combine video and trajectory
# use imageio to save video
videos = rearrange(videos, "b c t h w -> t b c h w")
trajectory = rearrange(trajectory, "b c t h w -> t b c h w")
outputs = []
for x, y in zip(videos, trajectory):
x = torchvision.utils.make_grid(x, nrow=6)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
x = (x * 255).numpy().astype(np.uint8)
y = torchvision.utils.make_grid(y, nrow=6)
y = y.transpose(0, 1).transpose(1, 2).squeeze(-1)
y = torch.cat([y, torch.mean(y, dim=-1, keepdim=True)], dim=-1)
y = (y * 255).numpy().astype(np.uint8)
x = Image.fromarray(x).convert("RGBA")
y = Image.fromarray(y)
x = Image.alpha_composite(x, y)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def save_videos_with_traj(videos: torch.Tensor, trajectory: torch.Tensor, path: str, rescale=False, fps=8, line_width=3, circle_radius=5):
# videos: [C, F, H, W]
# trajectory: [F, N, 2]
os.makedirs(os.path.dirname(path), exist_ok=True)
videos = rearrange(videos, "c f h w -> f h w c")
if rescale:
videos = (videos + 1) / 2
videos = (videos * 255).numpy().astype(np.uint8)
outputs = []
for frame_idx, img in enumerate(videos):
# img: [H, W, C], traj: [N, 2]
# draw trajectory use cv2.line
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
for traj_idx in range(trajectory.shape[1]):
for history_idx in range(frame_idx):
cv2.line(img, tuple(trajectory[history_idx, traj_idx].int().tolist()), tuple(trajectory[history_idx+1, traj_idx].int().tolist()), (0, 0, 255), line_width)
cv2.circle(img, tuple(trajectory[frame_idx, traj_idx].int().tolist()), circle_radius, (100, 230, 160), -1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
outputs.append(img)
imageio.mimsave(path, outputs, fps=fps)
def save_layer_prompts_video(videos, layer_masks, motion_scores, flow_maps, path, alpha=0.6, fps=8, flow_step=10, flow_scale=1.0):
# videos: [F, C, H, W]
# layer_masks: [N, F, H, W]
# motion_scores: [N, ]
# flow_maps: [F, 2, H, W]
frame_length = videos.shape[0]
h, w = videos.shape[-2:]
n_keyframes = layer_masks.shape[1]
if n_keyframes == 1:
keyframe_indices = [0]
elif n_keyframes == 2:
keyframe_indices = [0, frame_length - 1]
else:
keyframe_indices = list(range(n_keyframes))
videos = rearrange(videos, "t c h w -> t h w c")
videos = ((videos + 1) / 2 * 255).clamp(0, 255).numpy().astype(np.uint8)
layer_masks = layer_masks.numpy()
flow_maps = flow_maps.float().numpy()
frame_list = []
cmap = plt.get_cmap("tab10")
for frame_idx in range(frame_length):
output_frame = Image.new("RGBA", (w * 2, h * 2))
frame = Image.fromarray(videos[frame_idx]).convert("RGBA")
frame_mask = None
output_frame.paste(frame, (0, 0))
for layer_idx, layer_mask in enumerate(layer_masks):
if frame_idx in keyframe_indices:
layer_color = (np.array([*cmap(layer_idx)[:3], alpha]) * 255).astype(np.uint8)
if frame_idx == frame_length - 1:
mask_with_color = Image.fromarray(layer_mask[-1, :, :, np.newaxis] * layer_color[np.newaxis, np.newaxis, :])
else:
mask_with_color = Image.fromarray(layer_mask[frame_idx, :, :, np.newaxis] * layer_color[np.newaxis, np.newaxis, :])
else:
mask_with_color = Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8))
frame = Image.alpha_composite(frame, mask_with_color)
frame_mask = Image.alpha_composite(frame_mask, mask_with_color) if frame_mask is not None else mask_with_color
output_frame.paste(frame, (w, 0))
output_frame.paste(frame_mask, (0, h))
flow_x = flow_maps[frame_idx, 0] * flow_scale
flow_y = flow_maps[frame_idx, 1] * flow_scale
x, y = np.arange(0, w, step=flow_step), np.arange(0, h, step=flow_step)
X, Y = np.meshgrid(x, y)
U, V = flow_x[::flow_step, ::flow_step], flow_y[::flow_step, ::flow_step]
plt.figure()
plt.gca().set_facecolor('white')
plt.quiver(X, Y, U, V, color='black', angles='xy', scale_units='xy', scale=1)
plt.xlim(0, w)
plt.ylim(h, 0)
plt.gca().set_xticks([])
plt.gca().set_yticks([])
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
flow = Image.open(buf).convert("RGBA")
output_frame.paste(flow, (w, h))
plt.close()
frame_list.append(output_frame)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, frame_list, fps=fps)
def flow_uv_to_colors(u, v, rad, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (torch.tensor): Input horizontal flow of shape [N,H,W]
v (torch.tensor): Input vertical flow of shape [N,H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
torch.tensor: Flow visualization image of shape [N,3,H,W]
"""
flow_image = torch.zeros((u.shape[0], 3, u.shape[1], u.shape[2]), dtype=torch.uint8, device=u.device)
colorwheel = COLORWHEEL.to(u.device)
ncols = colorwheel.shape[0]
a = torch.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1)
k0 = torch.floor(fk).int()
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1 - f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1 - rad[idx] * (1 - col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2 - i if convert_to_bgr else i
flow_image[:, ch_idx, :, :] = torch.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Adapted from Tora: https://github.com/alibaba/Tora/blob/14db1b0a074284a6c265564eef07f5320911dc00/sat/utils/flow_utils.py#L120
Expects a two dimensional flow image of shape.
Args:
flow_uv (torch.Tensor): Flow UV image of shape [N,2,H,W]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
torch.Tensor: Flow visualization image of shape [N,3,H,W]
"""
if clip_flow is not None:
flow_uv = torch.clamp(flow_uv, 0, clip_flow)
u = flow_uv[:, 0]
v = flow_uv[:, 1]
rad = torch.sqrt(u**2 + v**2)
rad_max = torch.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
flow_image = flow_uv_to_colors(u, v, rad, convert_to_bgr)
return flow_image
def generate_gaussian_template(imgSize=200):
""" Adapted from DragAnything: https://github.com/showlab/DragAnything/blob/79355363218a7eb9b3437a31b8604b6d436d9337/dataset/dataset.py#L110"""
circle_img = np.zeros((imgSize, imgSize), np.float32)
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
# Guass Map
for i in range(imgSize):
for j in range(imgSize):
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
# isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40))
return isotropicGrayscaleImage
def generate_gaussian_heatmap(tracks, width, height, layer_index, layer_capacity, side=20, offset=True):
heatmap_template = generate_gaussian_template()
num_frames, num_points = tracks.shape[:2]
if isinstance(tracks, torch.Tensor):
tracks = tracks.cpu().numpy()
if offset:
offset_kernel = cv2.resize(heatmap_template / 255, (2 * side + 1, 2 * side + 1))
offset_kernel /= np.sum(offset_kernel)
offset_kernel /= offset_kernel[side, side]
heatmaps = []
for frame_idx in range(num_frames):
if offset:
layer_imgs = np.zeros((layer_capacity, height, width, 3), dtype=np.float32)
else:
layer_imgs = np.zeros((layer_capacity, height, width, 1), dtype=np.float32)
layer_heatmaps = []
for point_idx in range(num_points):
x, y = tracks[frame_idx, point_idx]
layer_id = layer_index[point_idx]
if x < 0 or y < 0 or x >= width or y >= height:
continue
x1 = int(max(x - side, 0))
x2 = int(min(x + side, width - 1))
y1 = int(max(y - side, 0))
y2 = int(min(y + side, height - 1))
if (x2 - x1) < 1 or (y2 - y1) < 1:
continue
temp_map = cv2.resize(heatmap_template, (x2-x1, y2-y1))
layer_imgs[layer_id, y1:y2,x1:x2, 0] = np.maximum(layer_imgs[layer_id, y1:y2,x1:x2, 0], temp_map)
if offset:
if frame_idx < num_frames - 1:
next_x, next_y = tracks[frame_idx + 1, point_idx]
else:
next_x, next_y = x, y
layer_imgs[layer_id, int(y), int(x), 1] = next_x - x
layer_imgs[layer_id, int(y), int(x), 2] = next_y - y
for img in layer_imgs:
if offset:
img[:, :, 1:] = cv2.filter2D(img[:, :, 1:], -1, offset_kernel)
else:
img = cv2.cvtColor(img[:, :, 0].astype(np.uint8), cv2.COLOR_GRAY2RGB)
layer_heatmaps.append(img)
heatmaps.append(np.stack(layer_heatmaps, axis=0))
heatmaps = np.stack(heatmaps, axis=0)
return torch.from_numpy(heatmaps).permute(0, 1, 4, 2, 3).contiguous().float() # [F, N_layer, C, H, W]