Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,178 Bytes
2a59fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import importlib
import numpy as np
import cv2
import torch
import torch.distributed as dist
import os
from einops import rearrange
import imageio
import torchvision
from PIL import Image
import io
from matplotlib import pyplot as plt
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
COLORWHEEL = torch.zeros((RY + YG + GC + CB + BM + MR, 3))
col = 0
# RY
COLORWHEEL[0:RY, 0] = 255
COLORWHEEL[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
col = col + RY
# YG
COLORWHEEL[col:col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
COLORWHEEL[col:col + YG, 1] = 255
col = col + YG
# GC
COLORWHEEL[col:col + GC, 1] = 255
COLORWHEEL[col:col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
col = col + GC
# CB
COLORWHEEL[col:col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
COLORWHEEL[col:col + CB, 2] = 255
col = col + CB
# BM
COLORWHEEL[col:col + BM, 2] = 255
COLORWHEEL[col:col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
col = col + BM
# MR
COLORWHEEL[col:col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
COLORWHEEL[col:col + MR, 0] = 255
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
return total_params
def check_istarget(name, para_list):
"""
name: full name of source para
para_list: partial name of target para
"""
istarget=False
for para in para_list:
if para in name:
return True
return istarget
def instantiate_from_config(config):
if not "target" in config:
if config == '__is_first_stage__':
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def load_npz_from_dir(data_dir):
data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)]
data = np.concatenate(data, axis=0)
return data
def load_npz_from_paths(data_paths):
data = [np.load(data_path)['arr_0'] for data_path in data_paths]
data = np.concatenate(data, axis=0)
return data
def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
h, w = image.shape[:2]
if resize_short_edge is not None:
k = resize_short_edge / min(h, w)
else:
k = max_resolution / (h * w)
k = k**0.5
h = int(np.round(h * k / 64)) * 64
w = int(np.round(w * k / 64)) * 64
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
return image
def setup_dist(args):
if dist.is_initialized():
return
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
'nccl',
init_method='env://'
)
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def save_images_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6):
videos = rearrange(videos, "b c t h w -> t b c h w")
os.makedirs(path, exist_ok=True)
for time_idx, x in enumerate(videos):
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
image = Image.fromarray(x)
image.save(os.path.join(path, f"{time_idx:04d}.png"))
def save_image_with_mask(image: torch.Tensor, masks: torch.Tensor, path: str, rescale=False, alpha=0.6):
# image: [C, H, W], mask: [N, H, W]
os.makedirs(os.path.dirname(path), exist_ok=True)
image = rearrange(image, "c h w -> h w c")
if rescale:
image = (image + 1.0) / 2.0 # -1,1 -> 0,1
image = (image * 255).numpy().astype(np.uint8)
final_image = Image.fromarray(image).convert("RGBA")
cmap = plt.get_cmap("tab20c")
masks = masks.cpu().numpy().astype(np.float32)
for i, img in enumerate(masks):
mask_color = np.array([*cmap(i * 4 + 2)[:3], alpha])
mask = img[:,:,None] * mask_color[None,None,:] * 255
mask = mask.astype(np.uint8)
mask = Image.fromarray(mask).convert("RGBA")
final_image = Image.alpha_composite(final_image, mask)
final_image.save(path)
def save_videos_with_heatmap(videos: torch.Tensor, trajectory: torch.Tensor, path: str, n_rows=6, fps=8):
# use Image RGBA and alpha_composite to combine video and trajectory
# use imageio to save video
videos = rearrange(videos, "b c t h w -> t b c h w")
trajectory = rearrange(trajectory, "b c t h w -> t b c h w")
outputs = []
for x, y in zip(videos, trajectory):
x = torchvision.utils.make_grid(x, nrow=6)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
x = (x * 255).numpy().astype(np.uint8)
y = torchvision.utils.make_grid(y, nrow=6)
y = y.transpose(0, 1).transpose(1, 2).squeeze(-1)
y = torch.cat([y, torch.mean(y, dim=-1, keepdim=True)], dim=-1)
y = (y * 255).numpy().astype(np.uint8)
x = Image.fromarray(x).convert("RGBA")
y = Image.fromarray(y)
x = Image.alpha_composite(x, y)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def save_videos_with_traj(videos: torch.Tensor, trajectory: torch.Tensor, path: str, rescale=False, fps=8, line_width=3, circle_radius=5):
# videos: [C, F, H, W]
# trajectory: [F, N, 2]
os.makedirs(os.path.dirname(path), exist_ok=True)
videos = rearrange(videos, "c f h w -> f h w c")
if rescale:
videos = (videos + 1) / 2
videos = (videos * 255).numpy().astype(np.uint8)
outputs = []
for frame_idx, img in enumerate(videos):
# img: [H, W, C], traj: [N, 2]
# draw trajectory use cv2.line
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
for traj_idx in range(trajectory.shape[1]):
for history_idx in range(frame_idx):
cv2.line(img, tuple(trajectory[history_idx, traj_idx].int().tolist()), tuple(trajectory[history_idx+1, traj_idx].int().tolist()), (0, 0, 255), line_width)
cv2.circle(img, tuple(trajectory[frame_idx, traj_idx].int().tolist()), circle_radius, (100, 230, 160), -1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
outputs.append(img)
imageio.mimsave(path, outputs, fps=fps)
def save_layer_prompts_video(videos, layer_masks, motion_scores, flow_maps, path, alpha=0.6, fps=8, flow_step=10, flow_scale=1.0):
# videos: [F, C, H, W]
# layer_masks: [N, F, H, W]
# motion_scores: [N, ]
# flow_maps: [F, 2, H, W]
frame_length = videos.shape[0]
h, w = videos.shape[-2:]
n_keyframes = layer_masks.shape[1]
if n_keyframes == 1:
keyframe_indices = [0]
elif n_keyframes == 2:
keyframe_indices = [0, frame_length - 1]
else:
keyframe_indices = list(range(n_keyframes))
videos = rearrange(videos, "t c h w -> t h w c")
videos = ((videos + 1) / 2 * 255).clamp(0, 255).numpy().astype(np.uint8)
layer_masks = layer_masks.numpy()
flow_maps = flow_maps.float().numpy()
frame_list = []
cmap = plt.get_cmap("tab10")
for frame_idx in range(frame_length):
output_frame = Image.new("RGBA", (w * 2, h * 2))
frame = Image.fromarray(videos[frame_idx]).convert("RGBA")
frame_mask = None
output_frame.paste(frame, (0, 0))
for layer_idx, layer_mask in enumerate(layer_masks):
if frame_idx in keyframe_indices:
layer_color = (np.array([*cmap(layer_idx)[:3], alpha]) * 255).astype(np.uint8)
if frame_idx == frame_length - 1:
mask_with_color = Image.fromarray(layer_mask[-1, :, :, np.newaxis] * layer_color[np.newaxis, np.newaxis, :])
else:
mask_with_color = Image.fromarray(layer_mask[frame_idx, :, :, np.newaxis] * layer_color[np.newaxis, np.newaxis, :])
else:
mask_with_color = Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8))
frame = Image.alpha_composite(frame, mask_with_color)
frame_mask = Image.alpha_composite(frame_mask, mask_with_color) if frame_mask is not None else mask_with_color
output_frame.paste(frame, (w, 0))
output_frame.paste(frame_mask, (0, h))
flow_x = flow_maps[frame_idx, 0] * flow_scale
flow_y = flow_maps[frame_idx, 1] * flow_scale
x, y = np.arange(0, w, step=flow_step), np.arange(0, h, step=flow_step)
X, Y = np.meshgrid(x, y)
U, V = flow_x[::flow_step, ::flow_step], flow_y[::flow_step, ::flow_step]
plt.figure()
plt.gca().set_facecolor('white')
plt.quiver(X, Y, U, V, color='black', angles='xy', scale_units='xy', scale=1)
plt.xlim(0, w)
plt.ylim(h, 0)
plt.gca().set_xticks([])
plt.gca().set_yticks([])
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
flow = Image.open(buf).convert("RGBA")
output_frame.paste(flow, (w, h))
plt.close()
frame_list.append(output_frame)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, frame_list, fps=fps)
def flow_uv_to_colors(u, v, rad, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (torch.tensor): Input horizontal flow of shape [N,H,W]
v (torch.tensor): Input vertical flow of shape [N,H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
torch.tensor: Flow visualization image of shape [N,3,H,W]
"""
flow_image = torch.zeros((u.shape[0], 3, u.shape[1], u.shape[2]), dtype=torch.uint8, device=u.device)
colorwheel = COLORWHEEL.to(u.device)
ncols = colorwheel.shape[0]
a = torch.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1)
k0 = torch.floor(fk).int()
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1 - f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1 - rad[idx] * (1 - col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2 - i if convert_to_bgr else i
flow_image[:, ch_idx, :, :] = torch.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Adapted from Tora: https://github.com/alibaba/Tora/blob/14db1b0a074284a6c265564eef07f5320911dc00/sat/utils/flow_utils.py#L120
Expects a two dimensional flow image of shape.
Args:
flow_uv (torch.Tensor): Flow UV image of shape [N,2,H,W]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
torch.Tensor: Flow visualization image of shape [N,3,H,W]
"""
if clip_flow is not None:
flow_uv = torch.clamp(flow_uv, 0, clip_flow)
u = flow_uv[:, 0]
v = flow_uv[:, 1]
rad = torch.sqrt(u**2 + v**2)
rad_max = torch.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
flow_image = flow_uv_to_colors(u, v, rad, convert_to_bgr)
return flow_image
def generate_gaussian_template(imgSize=200):
""" Adapted from DragAnything: https://github.com/showlab/DragAnything/blob/79355363218a7eb9b3437a31b8604b6d436d9337/dataset/dataset.py#L110"""
circle_img = np.zeros((imgSize, imgSize), np.float32)
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
# Guass Map
for i in range(imgSize):
for j in range(imgSize):
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
# isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40))
return isotropicGrayscaleImage
def generate_gaussian_heatmap(tracks, width, height, layer_index, layer_capacity, side=20, offset=True):
heatmap_template = generate_gaussian_template()
num_frames, num_points = tracks.shape[:2]
if isinstance(tracks, torch.Tensor):
tracks = tracks.cpu().numpy()
if offset:
offset_kernel = cv2.resize(heatmap_template / 255, (2 * side + 1, 2 * side + 1))
offset_kernel /= np.sum(offset_kernel)
offset_kernel /= offset_kernel[side, side]
heatmaps = []
for frame_idx in range(num_frames):
if offset:
layer_imgs = np.zeros((layer_capacity, height, width, 3), dtype=np.float32)
else:
layer_imgs = np.zeros((layer_capacity, height, width, 1), dtype=np.float32)
layer_heatmaps = []
for point_idx in range(num_points):
x, y = tracks[frame_idx, point_idx]
layer_id = layer_index[point_idx]
if x < 0 or y < 0 or x >= width or y >= height:
continue
x1 = int(max(x - side, 0))
x2 = int(min(x + side, width - 1))
y1 = int(max(y - side, 0))
y2 = int(min(y + side, height - 1))
if (x2 - x1) < 1 or (y2 - y1) < 1:
continue
temp_map = cv2.resize(heatmap_template, (x2-x1, y2-y1))
layer_imgs[layer_id, y1:y2,x1:x2, 0] = np.maximum(layer_imgs[layer_id, y1:y2,x1:x2, 0], temp_map)
if offset:
if frame_idx < num_frames - 1:
next_x, next_y = tracks[frame_idx + 1, point_idx]
else:
next_x, next_y = x, y
layer_imgs[layer_id, int(y), int(x), 1] = next_x - x
layer_imgs[layer_id, int(y), int(x), 2] = next_y - y
for img in layer_imgs:
if offset:
img[:, :, 1:] = cv2.filter2D(img[:, :, 1:], -1, offset_kernel)
else:
img = cv2.cvtColor(img[:, :, 0].astype(np.uint8), cv2.COLOR_GRAY2RGB)
layer_heatmaps.append(img)
heatmaps.append(np.stack(layer_heatmaps, axis=0))
heatmaps = np.stack(heatmaps, axis=0)
return torch.from_numpy(heatmaps).permute(0, 1, 4, 2, 3).contiguous().float() # [F, N_layer, C, H, W]
|