File size: 16,178 Bytes
2a59fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import importlib
import numpy as np
import cv2
import torch
import torch.distributed as dist
import os
from einops import rearrange
import imageio
import torchvision
from PIL import Image
import io
from matplotlib import pyplot as plt


RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6

COLORWHEEL = torch.zeros((RY + YG + GC + CB + BM + MR, 3))
col = 0

# RY
COLORWHEEL[0:RY, 0] = 255
COLORWHEEL[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
col = col + RY
# YG
COLORWHEEL[col:col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
COLORWHEEL[col:col + YG, 1] = 255
col = col + YG
# GC
COLORWHEEL[col:col + GC, 1] = 255
COLORWHEEL[col:col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
col = col + GC
# CB
COLORWHEEL[col:col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
COLORWHEEL[col:col + CB, 2] = 255
col = col + CB
# BM
COLORWHEEL[col:col + BM, 2] = 255
COLORWHEEL[col:col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
col = col + BM
# MR
COLORWHEEL[col:col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
COLORWHEEL[col:col + MR, 0] = 255


def count_params(model, verbose=False):
    total_params = sum(p.numel() for p in model.parameters())
    if verbose:
        print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
    return total_params


def check_istarget(name, para_list):
    """

    name: full name of source para

    para_list: partial name of target para

    """
    istarget=False
    for para in para_list:
        if para in name:
            return True
    return istarget


def instantiate_from_config(config):
    if not "target" in config:
        if config == '__is_first_stage__':
            return None
        elif config == "__is_unconditional__":
            return None
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def load_npz_from_dir(data_dir):
    data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)]
    data = np.concatenate(data, axis=0)
    return data


def load_npz_from_paths(data_paths):
    data = [np.load(data_path)['arr_0'] for data_path in data_paths]
    data = np.concatenate(data, axis=0)
    return data


def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
    h, w = image.shape[:2]
    if resize_short_edge is not None:
        k = resize_short_edge / min(h, w)
    else:
        k = max_resolution / (h * w)
        k = k**0.5
    h = int(np.round(h * k / 64)) * 64
    w = int(np.round(w * k / 64)) * 64
    image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
    return image


def setup_dist(args):
    if dist.is_initialized():
        return
    torch.cuda.set_device(args.local_rank)
    torch.distributed.init_process_group(
        'nccl',
        init_method='env://'
    )


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)

def save_images_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    os.makedirs(path, exist_ok=True)
    for time_idx, x in enumerate(videos):
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        image = Image.fromarray(x)
        image.save(os.path.join(path, f"{time_idx:04d}.png"))

def save_image_with_mask(image: torch.Tensor, masks: torch.Tensor, path: str, rescale=False, alpha=0.6):
    # image: [C, H, W], mask: [N, H, W]
    os.makedirs(os.path.dirname(path), exist_ok=True)
    image = rearrange(image, "c h w -> h w c")
    if rescale:
        image = (image + 1.0) / 2.0 # -1,1 -> 0,1
    image = (image * 255).numpy().astype(np.uint8)
    final_image = Image.fromarray(image).convert("RGBA")
    cmap = plt.get_cmap("tab20c")
    masks = masks.cpu().numpy().astype(np.float32)
    for i, img in enumerate(masks):
        mask_color = np.array([*cmap(i * 4 + 2)[:3], alpha])
        mask = img[:,:,None] * mask_color[None,None,:] * 255
        mask = mask.astype(np.uint8)
        mask = Image.fromarray(mask).convert("RGBA")
        final_image = Image.alpha_composite(final_image, mask)
    final_image.save(path)

def save_videos_with_heatmap(videos: torch.Tensor, trajectory: torch.Tensor, path: str, n_rows=6, fps=8):
    # use Image RGBA and alpha_composite to combine video and trajectory
    # use imageio to save video
    videos = rearrange(videos, "b c t h w -> t b c h w")
    trajectory = rearrange(trajectory, "b c t h w -> t b c h w")
    outputs = []
    for x, y in zip(videos, trajectory):
        x = torchvision.utils.make_grid(x, nrow=6)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        x = (x * 255).numpy().astype(np.uint8)
        y = torchvision.utils.make_grid(y, nrow=6)
        y = y.transpose(0, 1).transpose(1, 2).squeeze(-1)
        y = torch.cat([y, torch.mean(y, dim=-1, keepdim=True)], dim=-1)
        y = (y * 255).numpy().astype(np.uint8)
        x = Image.fromarray(x).convert("RGBA")
        y = Image.fromarray(y)
        x = Image.alpha_composite(x, y)
        outputs.append(x)
    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)

def save_videos_with_traj(videos: torch.Tensor, trajectory: torch.Tensor, path: str, rescale=False, fps=8, line_width=3, circle_radius=5):
    # videos: [C, F, H, W]
    # trajectory: [F, N, 2]
    os.makedirs(os.path.dirname(path), exist_ok=True)
    videos = rearrange(videos, "c f h w -> f h w c")
    if rescale:
        videos = (videos + 1) / 2
    videos = (videos * 255).numpy().astype(np.uint8)
    outputs = []
    for frame_idx, img in enumerate(videos):
        # img: [H, W, C], traj: [N, 2]
        # draw trajectory use cv2.line
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        for traj_idx in range(trajectory.shape[1]):
            for history_idx in range(frame_idx):
                cv2.line(img, tuple(trajectory[history_idx, traj_idx].int().tolist()), tuple(trajectory[history_idx+1, traj_idx].int().tolist()), (0, 0, 255), line_width)
            cv2.circle(img, tuple(trajectory[frame_idx, traj_idx].int().tolist()), circle_radius, (100, 230, 160), -1)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        outputs.append(img)
    imageio.mimsave(path, outputs, fps=fps)

def save_layer_prompts_video(videos, layer_masks, motion_scores, flow_maps, path, alpha=0.6, fps=8, flow_step=10, flow_scale=1.0):
    # videos: [F, C, H, W]
    # layer_masks: [N, F, H, W]
    # motion_scores: [N, ]
    # flow_maps: [F, 2, H, W]
    frame_length = videos.shape[0]
    h, w = videos.shape[-2:]
    n_keyframes = layer_masks.shape[1]
    if n_keyframes == 1:
        keyframe_indices = [0]
    elif n_keyframes == 2:
        keyframe_indices = [0, frame_length - 1]
    else:
        keyframe_indices = list(range(n_keyframes))
    videos = rearrange(videos, "t c h w -> t h w c")
    videos = ((videos + 1) / 2 * 255).clamp(0, 255).numpy().astype(np.uint8)
    layer_masks = layer_masks.numpy()
    flow_maps = flow_maps.float().numpy()
    frame_list = []
    cmap = plt.get_cmap("tab10")
    for frame_idx in range(frame_length):
        output_frame = Image.new("RGBA", (w * 2, h * 2))
        frame = Image.fromarray(videos[frame_idx]).convert("RGBA")
        frame_mask = None
        output_frame.paste(frame, (0, 0))
        for layer_idx, layer_mask in enumerate(layer_masks):
            if frame_idx in keyframe_indices:
                layer_color = (np.array([*cmap(layer_idx)[:3], alpha]) * 255).astype(np.uint8)
                if frame_idx == frame_length - 1:
                    mask_with_color = Image.fromarray(layer_mask[-1, :, :, np.newaxis] * layer_color[np.newaxis, np.newaxis, :])
                else:
                    mask_with_color = Image.fromarray(layer_mask[frame_idx, :, :, np.newaxis] * layer_color[np.newaxis, np.newaxis, :])
            else:
                mask_with_color = Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8))
            frame = Image.alpha_composite(frame, mask_with_color)
            frame_mask = Image.alpha_composite(frame_mask, mask_with_color) if frame_mask is not None else mask_with_color
        output_frame.paste(frame, (w, 0))
        output_frame.paste(frame_mask, (0, h))
        flow_x = flow_maps[frame_idx, 0] * flow_scale
        flow_y = flow_maps[frame_idx, 1] * flow_scale
        x, y = np.arange(0, w, step=flow_step), np.arange(0, h, step=flow_step)
        X, Y = np.meshgrid(x, y)
        U, V = flow_x[::flow_step, ::flow_step], flow_y[::flow_step, ::flow_step]
        plt.figure()
        plt.gca().set_facecolor('white')
        plt.quiver(X, Y, U, V, color='black', angles='xy', scale_units='xy', scale=1)
        plt.xlim(0, w)
        plt.ylim(h, 0)
        plt.gca().set_xticks([])
        plt.gca().set_yticks([])
        buf = io.BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
        buf.seek(0)
        flow = Image.open(buf).convert("RGBA")
        output_frame.paste(flow, (w, h))
        plt.close()
        frame_list.append(output_frame)
    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, frame_list, fps=fps)

def flow_uv_to_colors(u, v, rad, convert_to_bgr=False):
    """

    Applies the flow color wheel to (possibly clipped) flow components u and v.



    According to the C++ source code of Daniel Scharstein

    According to the Matlab source code of Deqing Sun



    Args:

        u (torch.tensor): Input horizontal flow of shape [N,H,W]

        v (torch.tensor): Input vertical flow of shape [N,H,W]

        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.



    Returns:

        torch.tensor: Flow visualization image of shape [N,3,H,W]

    """
    flow_image = torch.zeros((u.shape[0], 3, u.shape[1], u.shape[2]), dtype=torch.uint8, device=u.device)
    colorwheel = COLORWHEEL.to(u.device)
    ncols = colorwheel.shape[0]
    a = torch.arctan2(-v, -u) / np.pi
    fk = (a + 1) / 2 * (ncols - 1)
    k0 = torch.floor(fk).int()
    k1 = k0 + 1
    k1[k1 == ncols] = 0
    f = fk - k0
    for i in range(colorwheel.shape[1]):
        tmp = colorwheel[:, i]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1 - f) * col0 + f * col1
        idx = rad <= 1
        col[idx] = 1 - rad[idx] * (1 - col[idx])
        col[~idx] = col[~idx] * 0.75  # out of range
        # Note the 2-i => BGR instead of RGB
        ch_idx = 2 - i if convert_to_bgr else i
        flow_image[:, ch_idx, :, :] = torch.floor(255 * col)
    return flow_image

def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
    """

    Adapted from Tora: https://github.com/alibaba/Tora/blob/14db1b0a074284a6c265564eef07f5320911dc00/sat/utils/flow_utils.py#L120

    Expects a two dimensional flow image of shape.



    Args:

        flow_uv (torch.Tensor): Flow UV image of shape [N,2,H,W]

        clip_flow (float, optional): Clip maximum of flow values. Defaults to None.

        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.



    Returns:

        torch.Tensor: Flow visualization image of shape [N,3,H,W]

    """
    if clip_flow is not None:
        flow_uv = torch.clamp(flow_uv, 0, clip_flow)
    u = flow_uv[:, 0]
    v = flow_uv[:, 1]
    rad = torch.sqrt(u**2 + v**2)
    rad_max = torch.max(rad)
    epsilon = 1e-5
    u = u / (rad_max + epsilon)
    v = v / (rad_max + epsilon)
    flow_image = flow_uv_to_colors(u, v, rad, convert_to_bgr)
    return flow_image

def generate_gaussian_template(imgSize=200):
    """ Adapted from DragAnything: https://github.com/showlab/DragAnything/blob/79355363218a7eb9b3437a31b8604b6d436d9337/dataset/dataset.py#L110"""
    circle_img = np.zeros((imgSize, imgSize), np.float32)
    circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)

    isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)

    # Guass Map
    for i in range(imgSize):
        for j in range(imgSize):
            isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
                -1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))

    isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
    isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
    isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)

    # isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40))
    return isotropicGrayscaleImage

def generate_gaussian_heatmap(tracks, width, height, layer_index, layer_capacity, side=20, offset=True):
    heatmap_template = generate_gaussian_template()
    num_frames, num_points = tracks.shape[:2]
    if isinstance(tracks, torch.Tensor):
        tracks = tracks.cpu().numpy()
    if offset:
        offset_kernel = cv2.resize(heatmap_template / 255, (2 * side + 1, 2 * side + 1))
        offset_kernel /= np.sum(offset_kernel)
        offset_kernel /= offset_kernel[side, side]
    heatmaps = []
    for frame_idx in range(num_frames):
        if offset:
            layer_imgs = np.zeros((layer_capacity, height, width, 3), dtype=np.float32)
        else:
            layer_imgs = np.zeros((layer_capacity, height, width, 1), dtype=np.float32)
        layer_heatmaps = []
        for point_idx in range(num_points):
            x, y = tracks[frame_idx, point_idx]
            layer_id = layer_index[point_idx]
            if x < 0 or y < 0 or x >= width or y >= height:
                continue
            x1 = int(max(x - side, 0))
            x2 = int(min(x + side, width - 1))
            y1 = int(max(y - side, 0))
            y2 = int(min(y + side, height - 1))
            if (x2 - x1) < 1 or (y2 - y1) < 1:
                continue
            temp_map = cv2.resize(heatmap_template, (x2-x1, y2-y1))
            layer_imgs[layer_id, y1:y2,x1:x2, 0] = np.maximum(layer_imgs[layer_id, y1:y2,x1:x2, 0], temp_map)
            if offset:
                if frame_idx < num_frames - 1:
                    next_x, next_y = tracks[frame_idx + 1, point_idx]
                else:
                    next_x, next_y = x, y
                layer_imgs[layer_id, int(y), int(x), 1] = next_x - x
                layer_imgs[layer_id, int(y), int(x), 2] = next_y - y
        for img in layer_imgs:
            if offset:
                img[:, :, 1:] = cv2.filter2D(img[:, :, 1:], -1, offset_kernel)
            else:
                img = cv2.cvtColor(img[:, :, 0].astype(np.uint8), cv2.COLOR_GRAY2RGB)
            layer_heatmaps.append(img)
        heatmaps.append(np.stack(layer_heatmaps, axis=0))
    heatmaps = np.stack(heatmaps, axis=0)
    return torch.from_numpy(heatmaps).permute(0, 1, 4, 2, 3).contiguous().float()   # [F, N_layer, C, H, W]