Spaces:
Sleeping
Sleeping
File size: 7,752 Bytes
c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb 5686026 c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 5686026 b65a2d4 5686026 c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 3432a8c c9a97bb 5686026 3432a8c c9a97bb 3432a8c c9a97bb b65a2d4 5686026 b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 c9a97bb b65a2d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import shutil
import streamlit as st
import requests
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.llms import Together
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
from langchain_community.document_loaders import UnstructuredExcelLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
# Set API key
os.environ["TOGETHER_API_KEY"] = os.getenv("TOGETHER_API_KEY")
def inference(chain, input_query):
"""Invoke the processing chain with the input query."""
result = chain.invoke(input_query)
return result
def create_chain(retriever, prompt, model):
"""Compose the processing chain with the specified components."""
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
return chain
def generate_prompt():
"""Define the prompt template for question answering."""
template = """<s>[INST] Answer the question in a simple sentence based only on the following context:
{context}
Question: {question} [/INST]
"""
return ChatPromptTemplate.from_template(template)
def configure_model():
"""Configure the language model with specified parameters."""
return Together(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.1,
max_tokens=3000,
top_k=50,
top_p=0.7,
repetition_penalty=1.1,
)
def configure_retriever(documents):
"""Configure the retriever with embeddings and a FAISS vector store."""
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = FAISS.from_documents(documents, embeddings)
return vector_db.as_retriever()
def load_pdf_documents(path):
"""Load and preprocess PDF documents from the specified path."""
documents = []
for file in os.listdir(path):
if file.endswith('.pdf'):
filepath = os.path.join(path, file)
loader = UnstructuredPDFLoader(filepath)
documents.extend(loader.load())
return documents
def load_word_documents(path):
"""Load and preprocess Word documents from the specified path."""
documents = []
for file in os.listdir(path):
if file.endswith('.docx'):
filepath = os.path.join(path, file)
loader = UnstructuredWordDocumentLoader(filepath)
documents.extend(loader.load())
return documents
def load_excel_documents(path):
"""Load and preprocess Excel documents from the specified path."""
documents = []
for file in os.listdir(path):
if file.endswith('.xlsx'):
filepath = os.path.join(path, file)
loader = UnstructuredExcelLoader(filepath)
documents.extend(loader.load())
return documents
def load_documents(path):
"""Load and preprocess documents from PDF, Word, and Excel files."""
pdf_docs = load_pdf_documents(path)
word_docs = load_word_documents(path)
excel_docs = load_excel_documents(path)
return pdf_docs + word_docs + excel_docs
def scrape_url(url):
"""Scrape content from a given URL and save it to a text file."""
try:
response = requests.get(url)
response.raise_for_status() # Ensure we notice bad responses
soup = BeautifulSoup(response.content, 'html.parser')
text = soup.get_text()
# Save the text content to a file for processing
text_file_path = "data/scraped_content.txt"
with open(text_file_path, "w") as file:
file.write(text)
return text_file_path
except requests.RequestException as e:
st.error(f"Error fetching the URL: {e}")
return None
def process_document(path, input_query):
"""Process the document by setting up the chain and invoking it with the input query."""
documents = load_documents(path)
if not documents:
st.error("No documents found. Please check the uploaded files or scraped content.")
return "No documents found."
text_splitter = CharacterTextSplitter(chunk_size=18000, chunk_overlap=10)
split_docs = text_splitter.split_documents(documents)
if not split_docs:
st.error("No text could be extracted from the documents.")
return "No text could be extracted."
llm_model = configure_model()
prompt = generate_prompt()
retriever = configure_retriever(split_docs)
chain = create_chain(retriever, prompt, llm_model)
response = inference(chain, input_query)
return response
def main():
"""Main function to run the Streamlit app."""
tmp_folder = '/tmp/1'
os.makedirs(tmp_folder, exist_ok=True)
st.title("Q&A Document AI RAG Chatbot")
uploaded_files = st.sidebar.file_uploader("Choose PDF, Word, or Excel files", accept_multiple_files=True, type=['pdf', 'docx', 'xlsx'])
if uploaded_files:
for file in uploaded_files:
with open(os.path.join(tmp_folder, file.name), 'wb') as f:
f.write(file.getbuffer())
st.success('Files successfully uploaded. Start prompting!')
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if uploaded_files:
with st.form(key='question_form'):
user_query = st.text_input("Ask a question:", key="query_input")
if st.form_submit_button("Ask") and user_query:
response = process_document(tmp_folder, user_query)
if response: # Check if response is not empty
st.session_state.chat_history.append({"question": user_query, "answer": response})
if st.button("Clear Chat History"):
st.session_state.chat_history = []
for chat in st.session_state.chat_history:
st.markdown(f"**Q:** {chat['question']}")
st.markdown(f"**A:** {chat['answer']}")
st.markdown("---")
else:
st.success('Upload Documents to Start Processing!')
url_input = st.sidebar.text_input("Or enter a URL to scrape content from:")
if st.sidebar.button("Scrape URL"):
if url_input:
file_path = scrape_url(url_input)
if file_path:
documents = load_documents(tmp_folder)
if documents: # Check if documents are loaded after scraping
response = process_document(tmp_folder, "What is the content of the URL?")
if response: # Check if response is not empty
st.session_state.chat_history.append({"question": "What is the content of the URL?", "answer": response})
st.success("URL content processed successfully!")
else:
st.error("Failed to load any documents from the scraped URL content.")
else:
st.error("Failed to process URL content.")
else:
st.warning("Please enter a valid URL.")
if st.sidebar.button("REMOVE UPLOADED FILES"):
document_count = os.listdir(tmp_folder)
if len(document_count) > 0:
shutil.rmtree(tmp_folder)
st.sidebar.write("FILES DELETED SUCCESSFULLY!")
else:
st.sidebar.write("NO DOCUMENT FOUND TO DELETE! PLEASE UPLOAD DOCUMENTS TO START PROCESS!")
if __name__ == "__main__":
main()
|