Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,17 @@
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 4 |
from langchain_core.prompts import ChatPromptTemplate
|
| 5 |
-
from langchain_community.vectorstores import FAISS
|
| 6 |
from langchain_core.output_parsers import StrOutputParser
|
| 7 |
from langchain_core.runnables import RunnablePassthrough
|
| 8 |
from langchain_community.llms import Together
|
|
|
|
| 9 |
from langchain_community.document_loaders import UnstructuredPDFLoader
|
|
|
|
|
|
|
| 10 |
from langchain.text_splitter import CharacterTextSplitter
|
| 11 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 12 |
|
|
@@ -51,33 +56,79 @@ def configure_model():
|
|
| 51 |
)
|
| 52 |
|
| 53 |
|
| 54 |
-
def configure_retriever(
|
| 55 |
"""Configure the retriever with embeddings and a FAISS vector store."""
|
| 56 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 57 |
-
vector_db = FAISS.from_documents(
|
| 58 |
return vector_db.as_retriever()
|
| 59 |
|
| 60 |
|
| 61 |
-
def
|
| 62 |
-
"""Load and preprocess documents from
|
| 63 |
-
|
| 64 |
for file in os.listdir(path):
|
| 65 |
if file.endswith('.pdf'):
|
| 66 |
filepath = os.path.join(path, file)
|
| 67 |
loader = UnstructuredPDFLoader(filepath)
|
| 68 |
-
documents
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
def process_document(path, input_query):
|
| 76 |
"""Process the document by setting up the chain and invoking it with the input query."""
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
llm_model = configure_model()
|
| 79 |
prompt = generate_prompt()
|
| 80 |
-
retriever = configure_retriever(
|
| 81 |
chain = create_chain(retriever, prompt, llm_model)
|
| 82 |
response = inference(chain, input_query)
|
| 83 |
return response
|
|
@@ -86,16 +137,17 @@ def process_document(path, input_query):
|
|
| 86 |
def main():
|
| 87 |
"""Main function to run the Streamlit app."""
|
| 88 |
tmp_folder = '/tmp/1'
|
| 89 |
-
os.makedirs(tmp_folder,exist_ok=True)
|
| 90 |
|
| 91 |
-
st.title("Q&A
|
| 92 |
|
| 93 |
-
uploaded_files = st.sidebar.file_uploader("Choose PDF files", accept_multiple_files=True, type='pdf')
|
| 94 |
if uploaded_files:
|
| 95 |
for file in uploaded_files:
|
| 96 |
with open(os.path.join(tmp_folder, file.name), 'wb') as f:
|
| 97 |
f.write(file.getbuffer())
|
| 98 |
-
st.success('
|
|
|
|
| 99 |
if 'chat_history' not in st.session_state:
|
| 100 |
st.session_state.chat_history = []
|
| 101 |
|
|
@@ -108,21 +160,35 @@ def main():
|
|
| 108 |
|
| 109 |
if st.button("Clear Chat History"):
|
| 110 |
st.session_state.chat_history = []
|
|
|
|
| 111 |
for chat in st.session_state.chat_history:
|
| 112 |
st.markdown(f"**Q:** {chat['question']}")
|
| 113 |
st.markdown(f"**A:** {chat['answer']}")
|
| 114 |
st.markdown("---")
|
| 115 |
else:
|
| 116 |
-
st.success('Upload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
if st.sidebar.button("REMOVE UPLOADED FILES"):
|
| 119 |
document_count = os.listdir(tmp_folder)
|
| 120 |
if len(document_count) > 0:
|
| 121 |
shutil.rmtree(tmp_folder)
|
| 122 |
-
st.sidebar.write("FILES DELETED SUCCESSFULLY
|
| 123 |
else:
|
| 124 |
-
st.sidebar.write("NO DOCUMENT FOUND TO DELETE
|
| 125 |
-
|
| 126 |
|
| 127 |
if __name__ == "__main__":
|
| 128 |
-
main()
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
import streamlit as st
|
| 4 |
+
import requests
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
import pandas as pd
|
| 7 |
from langchain_core.prompts import ChatPromptTemplate
|
|
|
|
| 8 |
from langchain_core.output_parsers import StrOutputParser
|
| 9 |
from langchain_core.runnables import RunnablePassthrough
|
| 10 |
from langchain_community.llms import Together
|
| 11 |
+
from langchain_community.vectorstores import FAISS
|
| 12 |
from langchain_community.document_loaders import UnstructuredPDFLoader
|
| 13 |
+
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
|
| 14 |
+
from langchain_community.document_loaders import UnstructuredExcelLoader
|
| 15 |
from langchain.text_splitter import CharacterTextSplitter
|
| 16 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 17 |
|
|
|
|
| 56 |
)
|
| 57 |
|
| 58 |
|
| 59 |
+
def configure_retriever(documents):
|
| 60 |
"""Configure the retriever with embeddings and a FAISS vector store."""
|
| 61 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 62 |
+
vector_db = FAISS.from_documents(documents, embeddings)
|
| 63 |
return vector_db.as_retriever()
|
| 64 |
|
| 65 |
|
| 66 |
+
def load_pdf_documents(path):
|
| 67 |
+
"""Load and preprocess PDF documents from the specified path."""
|
| 68 |
+
documents = []
|
| 69 |
for file in os.listdir(path):
|
| 70 |
if file.endswith('.pdf'):
|
| 71 |
filepath = os.path.join(path, file)
|
| 72 |
loader = UnstructuredPDFLoader(filepath)
|
| 73 |
+
documents.extend(loader.load())
|
| 74 |
+
return documents
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def load_word_documents(path):
|
| 78 |
+
"""Load and preprocess Word documents from the specified path."""
|
| 79 |
+
documents = []
|
| 80 |
+
for file in os.listdir(path):
|
| 81 |
+
if file.endswith('.docx'):
|
| 82 |
+
filepath = os.path.join(path, file)
|
| 83 |
+
loader = UnstructuredWordDocumentLoader(filepath)
|
| 84 |
+
documents.extend(loader.load())
|
| 85 |
+
return documents
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def load_excel_documents(path):
|
| 89 |
+
"""Load and preprocess Excel documents from the specified path."""
|
| 90 |
+
documents = []
|
| 91 |
+
for file in os.listdir(path):
|
| 92 |
+
if file.endswith('.xlsx'):
|
| 93 |
+
filepath = os.path.join(path, file)
|
| 94 |
+
loader = UnstructuredExcelLoader(filepath)
|
| 95 |
+
documents.extend(loader.load())
|
| 96 |
+
return documents
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def load_documents(path):
|
| 100 |
+
"""Load and preprocess documents from PDF, Word, and Excel files."""
|
| 101 |
+
pdf_docs = load_pdf_documents(path)
|
| 102 |
+
word_docs = load_word_documents(path)
|
| 103 |
+
excel_docs = load_excel_documents(path)
|
| 104 |
+
return pdf_docs + word_docs + excel_docs
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def scrape_url(url):
|
| 108 |
+
"""Scrape content from a given URL and save it to a text file."""
|
| 109 |
+
try:
|
| 110 |
+
response = requests.get(url)
|
| 111 |
+
response.raise_for_status() # Ensure we notice bad responses
|
| 112 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 113 |
+
text = soup.get_text()
|
| 114 |
+
# Save the text content to a file for processing
|
| 115 |
+
text_file_path = "data/scraped_content.txt"
|
| 116 |
+
with open(text_file_path, "w") as file:
|
| 117 |
+
file.write(text)
|
| 118 |
+
return text_file_path
|
| 119 |
+
except requests.RequestException as e:
|
| 120 |
+
st.error(f"Error fetching the URL: {e}")
|
| 121 |
+
return None
|
| 122 |
|
| 123 |
|
| 124 |
def process_document(path, input_query):
|
| 125 |
"""Process the document by setting up the chain and invoking it with the input query."""
|
| 126 |
+
documents = load_documents(path)
|
| 127 |
+
text_splitter = CharacterTextSplitter(chunk_size=18000, chunk_overlap=10)
|
| 128 |
+
split_docs = text_splitter.split_documents(documents)
|
| 129 |
llm_model = configure_model()
|
| 130 |
prompt = generate_prompt()
|
| 131 |
+
retriever = configure_retriever(split_docs)
|
| 132 |
chain = create_chain(retriever, prompt, llm_model)
|
| 133 |
response = inference(chain, input_query)
|
| 134 |
return response
|
|
|
|
| 137 |
def main():
|
| 138 |
"""Main function to run the Streamlit app."""
|
| 139 |
tmp_folder = '/tmp/1'
|
| 140 |
+
os.makedirs(tmp_folder, exist_ok=True)
|
| 141 |
|
| 142 |
+
st.title("Q&A Document AI RAG Chatbot")
|
| 143 |
|
| 144 |
+
uploaded_files = st.sidebar.file_uploader("Choose PDF, Word, or Excel files", accept_multiple_files=True, type=['pdf', 'docx', 'xlsx'])
|
| 145 |
if uploaded_files:
|
| 146 |
for file in uploaded_files:
|
| 147 |
with open(os.path.join(tmp_folder, file.name), 'wb') as f:
|
| 148 |
f.write(file.getbuffer())
|
| 149 |
+
st.success('Files successfully uploaded. Start prompting!')
|
| 150 |
+
|
| 151 |
if 'chat_history' not in st.session_state:
|
| 152 |
st.session_state.chat_history = []
|
| 153 |
|
|
|
|
| 160 |
|
| 161 |
if st.button("Clear Chat History"):
|
| 162 |
st.session_state.chat_history = []
|
| 163 |
+
|
| 164 |
for chat in st.session_state.chat_history:
|
| 165 |
st.markdown(f"**Q:** {chat['question']}")
|
| 166 |
st.markdown(f"**A:** {chat['answer']}")
|
| 167 |
st.markdown("---")
|
| 168 |
else:
|
| 169 |
+
st.success('Upload Documents to Start Processing!')
|
| 170 |
+
|
| 171 |
+
url_input = st.sidebar.text_input("Or enter a URL to scrape content from:")
|
| 172 |
+
if st.sidebar.button("Scrape URL"):
|
| 173 |
+
if url_input:
|
| 174 |
+
file_path = scrape_url(url_input)
|
| 175 |
+
if file_path:
|
| 176 |
+
documents = load_documents(tmp_folder)
|
| 177 |
+
response = process_document(tmp_folder, "What is the content of the URL?")
|
| 178 |
+
st.session_state.chat_history.append({"question": "What is the content of the URL?", "answer": response})
|
| 179 |
+
st.success("URL content processed successfully!")
|
| 180 |
+
else:
|
| 181 |
+
st.error("Failed to process URL content.")
|
| 182 |
+
else:
|
| 183 |
+
st.warning("Please enter a valid URL.")
|
| 184 |
|
| 185 |
if st.sidebar.button("REMOVE UPLOADED FILES"):
|
| 186 |
document_count = os.listdir(tmp_folder)
|
| 187 |
if len(document_count) > 0:
|
| 188 |
shutil.rmtree(tmp_folder)
|
| 189 |
+
st.sidebar.write("FILES DELETED SUCCESSFULLY!")
|
| 190 |
else:
|
| 191 |
+
st.sidebar.write("NO DOCUMENT FOUND TO DELETE! PLEASE UPLOAD DOCUMENTS TO START PROCESS!")
|
|
|
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
+
main()
|