legalfriend / app.py
Hidayatmahar's picture
Update app.py
dff9474 verified
import streamlit as st
import os
from pinecone import Pinecone, ServerlessSpec
from sentence_transformers import SentenceTransformer
import numpy as np
from datasets import load_dataset
# βœ… Step 1: Fetch Pinecone API key from Hugging Face secrets
if "PINECONE_API_KEY" not in st.secrets:
st.error("🚨 Pinecone API key not found! Please set it in Hugging Face secrets.")
st.stop()
pinecone_api_key = st.secrets["PINECONE_API_KEY"] # βœ… Now it's properly defined
# βœ… Step 2: Initialize Pinecone client
pc = Pinecone(api_key=pinecone_api_key)
# βœ… Step 3: Connect to your existing Pinecone index
index_name = "legal-docs-index"
index = pc.Index(index_name)
# βœ… Step 4: Load embedding model
model = SentenceTransformer("text-embedding-ada-002")
# βœ… Step 5: Load dataset (for reference)
dataset = load_dataset("macadeliccc/US-LegalKit", split="train")
law_texts = [item['text'] for item in dataset if 'text' in item]
# βœ… Step 6: Function to search Pinecone index
def search_pinecone(query, top_k=5):
query_embedding = model.encode([query]).tolist()
results = index.query(query_embedding, top_k=top_k, include_metadata=True)
return [match['metadata']['text'] for match in results['matches']]
# βœ… Step 7: Streamlit UI
st.title("πŸ” Legal AI Assistant (US-LegalKit)")
query = st.text_input("πŸ“Œ Enter your legal query:")
if query:
results = search_pinecone(query)
st.write("### πŸ“„ Relevant Legal Documents:")
for i, doc in enumerate(results, 1):
st.write(f"**{i}.** {doc[:500]}...")