File size: 1,546 Bytes
255ab1b
 
ef7a3be
255ab1b
 
 
1710972
255ab1b
 
 
 
 
 
 
 
ef7a3be
5a16bc2
255ab1b
dff9474
ef7a3be
255ab1b
 
dff9474
255ab1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import streamlit as st
import os
from pinecone import Pinecone, ServerlessSpec
from sentence_transformers import SentenceTransformer
import numpy as np
from datasets import load_dataset

# βœ… Step 1: Fetch Pinecone API key from Hugging Face secrets
if "PINECONE_API_KEY" not in st.secrets:
    st.error("🚨 Pinecone API key not found! Please set it in Hugging Face secrets.")
    st.stop()

pinecone_api_key = st.secrets["PINECONE_API_KEY"]  # βœ… Now it's properly defined

# βœ… Step 2: Initialize Pinecone client
pc = Pinecone(api_key=pinecone_api_key)

# βœ… Step 3: Connect to your existing Pinecone index
index_name = "legal-docs-index"
index = pc.Index(index_name)

# βœ… Step 4: Load embedding model
model = SentenceTransformer("text-embedding-ada-002")

# βœ… Step 5: Load dataset (for reference)
dataset = load_dataset("macadeliccc/US-LegalKit", split="train")
law_texts = [item['text'] for item in dataset if 'text' in item]

# βœ… Step 6: Function to search Pinecone index
def search_pinecone(query, top_k=5):
    query_embedding = model.encode([query]).tolist()
    results = index.query(query_embedding, top_k=top_k, include_metadata=True)
    return [match['metadata']['text'] for match in results['matches']]

# βœ… Step 7: Streamlit UI
st.title("πŸ” Legal AI Assistant (US-LegalKit)")

query = st.text_input("πŸ“Œ Enter your legal query:")

if query:
    results = search_pinecone(query)
    st.write("### πŸ“„ Relevant Legal Documents:")
    for i, doc in enumerate(results, 1):
        st.write(f"**{i}.** {doc[:500]}...")