Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,44 @@
|
|
|
|
|
|
1 |
from pinecone import Pinecone, ServerlessSpec
|
|
|
|
|
|
|
2 |
|
3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
pc = Pinecone(api_key=pinecone_api_key)
|
5 |
|
6 |
-
# Connect to your existing index
|
7 |
index_name = "legal-docs-index-dji2ip8"
|
8 |
index = pc.Index(index_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
from pinecone import Pinecone, ServerlessSpec
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import numpy as np
|
6 |
+
from datasets import load_dataset
|
7 |
|
8 |
+
# β
Step 1: Fetch Pinecone API key from Hugging Face secrets
|
9 |
+
if "PINECONE_API_KEY" not in st.secrets:
|
10 |
+
st.error("π¨ Pinecone API key not found! Please set it in Hugging Face secrets.")
|
11 |
+
st.stop()
|
12 |
+
|
13 |
+
pinecone_api_key = st.secrets["PINECONE_API_KEY"] # β
Now it's properly defined
|
14 |
+
|
15 |
+
# β
Step 2: Initialize Pinecone client
|
16 |
pc = Pinecone(api_key=pinecone_api_key)
|
17 |
|
18 |
+
# β
Step 3: Connect to your existing Pinecone index
|
19 |
index_name = "legal-docs-index-dji2ip8"
|
20 |
index = pc.Index(index_name)
|
21 |
+
|
22 |
+
# β
Step 4: Load embedding model
|
23 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
24 |
+
|
25 |
+
# β
Step 5: Load dataset (for reference)
|
26 |
+
dataset = load_dataset("macadeliccc/US-LegalKit", split="train")
|
27 |
+
law_texts = [item['text'] for item in dataset if 'text' in item]
|
28 |
+
|
29 |
+
# β
Step 6: Function to search Pinecone index
|
30 |
+
def search_pinecone(query, top_k=5):
|
31 |
+
query_embedding = model.encode([query]).tolist()
|
32 |
+
results = index.query(query_embedding, top_k=top_k, include_metadata=True)
|
33 |
+
return [match['metadata']['text'] for match in results['matches']]
|
34 |
+
|
35 |
+
# β
Step 7: Streamlit UI
|
36 |
+
st.title("π Legal AI Assistant (US-LegalKit)")
|
37 |
+
|
38 |
+
query = st.text_input("π Enter your legal query:")
|
39 |
+
|
40 |
+
if query:
|
41 |
+
results = search_pinecone(query)
|
42 |
+
st.write("### π Relevant Legal Documents:")
|
43 |
+
for i, doc in enumerate(results, 1):
|
44 |
+
st.write(f"**{i}.** {doc[:500]}...")
|