Initial commit
Browse files
src/utils/gradio_utils.py
CHANGED
|
@@ -74,7 +74,6 @@ def launch_optimize(img_in_real, prompt, n_hiper):
|
|
| 74 |
CLIP_text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name, subfolder="text_encoder")#, use_auth_token=True)
|
| 75 |
vae = AutoencoderKL.from_pretrained(pretrained_model_name, subfolder="vae")#, use_auth_token=True)
|
| 76 |
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name, subfolder="unet")#, use_auth_token=True)
|
| 77 |
-
unet.enable_xformers_memory_efficient_attention()
|
| 78 |
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
| 79 |
|
| 80 |
|
|
|
|
| 74 |
CLIP_text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name, subfolder="text_encoder")#, use_auth_token=True)
|
| 75 |
vae = AutoencoderKL.from_pretrained(pretrained_model_name, subfolder="vae")#, use_auth_token=True)
|
| 76 |
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name, subfolder="unet")#, use_auth_token=True)
|
|
|
|
| 77 |
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
| 78 |
|
| 79 |
|