HiPer0 commited on
Commit
1108886
·
1 Parent(s): c40fd53

Initial commit

Browse files
Files changed (2) hide show
  1. requirements.txt +0 -1
  2. src/utils/gradio_utils.py +16 -0
requirements.txt CHANGED
@@ -1,4 +1,3 @@
1
- https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/T4/xformers-0.0.13.dev0-py3-none-any.whl
2
  accelerate==0.12.0
3
  diffusers==0.9.0
4
  tokenizers==0.13.2
 
 
1
  accelerate==0.12.0
2
  diffusers==0.9.0
3
  tokenizers==0.13.2
src/utils/gradio_utils.py CHANGED
@@ -19,6 +19,8 @@ from transformers import CLIPTextModel, CLIPTokenizer
19
  from torch import autocast
20
  from src.diffusers_ import StableDiffusionPipeline
21
 
 
 
22
 
23
 
24
  def launch_source():
@@ -72,9 +74,23 @@ def launch_optimize(img_in_real, prompt, n_hiper):
72
  CLIP_text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name, subfolder="text_encoder")#, use_auth_token=True)
73
  vae = AutoencoderKL.from_pretrained(pretrained_model_name, subfolder="vae")#, use_auth_token=True)
74
  unet = UNet2DConditionModel.from_pretrained(pretrained_model_name, subfolder="unet")#, use_auth_token=True)
 
75
  noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
76
 
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  # Encode the input image.
79
  vae.to(accelerator.device, dtype=weight_dtype)
80
  input_image = img_in_real.convert("RGB")
 
19
  from torch import autocast
20
  from src.diffusers_ import StableDiffusionPipeline
21
 
22
+ from diffusers.utils.import_utils import is_xformers_available
23
+ from packaging import version
24
 
25
 
26
  def launch_source():
 
74
  CLIP_text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name, subfolder="text_encoder")#, use_auth_token=True)
75
  vae = AutoencoderKL.from_pretrained(pretrained_model_name, subfolder="vae")#, use_auth_token=True)
76
  unet = UNet2DConditionModel.from_pretrained(pretrained_model_name, subfolder="unet")#, use_auth_token=True)
77
+ unet.enable_xformers_memory_efficient_attention()
78
  noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
79
 
80
 
81
+ if is_xformers_available():
82
+ import xformers
83
+
84
+ xformers_version = version.parse(xformers.__version__)
85
+ if xformers_version == version.parse("0.0.16"):
86
+ print(
87
+ "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
88
+ )
89
+ unet.enable_xformers_memory_efficient_attention()
90
+ else:
91
+ raise ValueError("xformers is not available. Make sure it is installed correctly")
92
+
93
+
94
  # Encode the input image.
95
  vae.to(accelerator.device, dtype=weight_dtype)
96
  input_image = img_in_real.convert("RGB")