Spaces:
Sleeping
Sleeping
Hugo
commited on
Commit
·
671d64d
1
Parent(s):
e873032
back to streamlit
Browse files- app.py +28 -36
- app_streamlit.py → app_gradio.py +36 -28
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
from peft import PeftModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import os
|
@@ -15,6 +15,7 @@ openai_api_key = os.environ.get('OPENAI_API_KEY')
|
|
15 |
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
|
|
18 |
def load_model():
|
19 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, use_auth_token=hf_token)
|
20 |
model = PeftModel.from_pretrained(base_model, model_id, use_auth_token=hf_token).to(device)
|
@@ -72,40 +73,31 @@ def process_prompt(tokenizer, content, video_summary = '', guidelines = None):
|
|
72 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
73 |
return prompt
|
74 |
|
75 |
-
def generate_headlines(content, video_summary):
|
76 |
-
if not content.strip():
|
77 |
-
return "Please enter valid article content."
|
78 |
-
|
79 |
-
if not video_summary.strip():
|
80 |
-
video_summary = ''
|
81 |
-
|
82 |
-
prompt = process_prompt(tokenizer, content, video_summary, guidelines)
|
83 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
84 |
-
|
85 |
-
headlines = []
|
86 |
-
for i in range(5):
|
87 |
-
outputs = model.generate(**inputs,
|
88 |
-
max_new_tokens=60,
|
89 |
-
num_return_sequences=1,
|
90 |
-
do_sample=True,
|
91 |
-
temperature=0.7)
|
92 |
-
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
93 |
-
response = response.replace('"', '')
|
94 |
-
headlines.append(f"Headline {i+1}: {response}")
|
95 |
-
|
96 |
-
return "\n\n".join(headlines)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
fn=generate_headlines,
|
101 |
-
inputs=[
|
102 |
-
gr.Textbox(label="Article Content", placeholder="Type the main content of the article here..."),
|
103 |
-
gr.Textbox(label="Video Summary (Optional)", placeholder="Type the summary of the video related to the article...")
|
104 |
-
],
|
105 |
-
outputs=gr.Textbox(label="Generated Headlines"),
|
106 |
-
title="Article Headline Writer",
|
107 |
-
description="Write catchy headlines from content and video summary."
|
108 |
-
)
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
from peft import PeftModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import os
|
|
|
15 |
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
18 |
+
@st.cache_resource
|
19 |
def load_model():
|
20 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, use_auth_token=hf_token)
|
21 |
model = PeftModel.from_pretrained(base_model, model_id, use_auth_token=hf_token).to(device)
|
|
|
73 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
74 |
return prompt
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
st.title("Article Headline Writer")
|
78 |
+
st.write("Write a catchy headline from content and video summary.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Inputs for content and video summary
|
81 |
+
content = st.text_area("Enter the article content:", placeholder="Type the main content of the article here...")
|
82 |
+
video_summary = st.text_area("Enter the summary of the article's accompanying video (optional):", placeholder="Type the summary of the video related to the article...")
|
83 |
+
|
84 |
+
if st.button("Generate Headline"):
|
85 |
+
if content.strip():
|
86 |
+
if not video_summary.strip():
|
87 |
+
video_summary = ''
|
88 |
+
prompt = process_prompt(tokenizer, content, video_summary, guidelines)
|
89 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
90 |
+
|
91 |
+
st.write("### Generated 5 Potential Headlines:")
|
92 |
+
for i in range(5):
|
93 |
+
st.write(f"### Headline {i+1}")
|
94 |
+
outputs = model.generate(**inputs,
|
95 |
+
max_new_tokens=60,
|
96 |
+
num_return_sequences=1,
|
97 |
+
do_sample=True,
|
98 |
+
temperature=0.7)
|
99 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
100 |
+
response = response.replace('"', '')
|
101 |
+
st.write(f"{response}")
|
102 |
+
else:
|
103 |
+
st.write("Please enter a valid prompt.")
|
app_streamlit.py → app_gradio.py
RENAMED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
from peft import PeftModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import os
|
@@ -15,7 +15,6 @@ openai_api_key = os.environ.get('OPENAI_API_KEY')
|
|
15 |
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
18 |
-
@st.cache_resource
|
19 |
def load_model():
|
20 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, use_auth_token=hf_token)
|
21 |
model = PeftModel.from_pretrained(base_model, model_id, use_auth_token=hf_token).to(device)
|
@@ -73,31 +72,40 @@ def process_prompt(tokenizer, content, video_summary = '', guidelines = None):
|
|
73 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
74 |
return prompt
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
if
|
85 |
-
|
86 |
-
if not video_summary.strip():
|
87 |
-
video_summary = ''
|
88 |
-
prompt = process_prompt(tokenizer, content, video_summary, guidelines)
|
89 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
90 |
-
|
91 |
-
st.write("### Generated 5 Potential Headlines:")
|
92 |
-
for i in range(5):
|
93 |
-
st.write(f"### Headline {i+1}")
|
94 |
-
outputs = model.generate(**inputs,
|
95 |
-
max_new_tokens=60,
|
96 |
-
num_return_sequences=1,
|
97 |
-
do_sample=True,
|
98 |
-
temperature=0.7)
|
99 |
-
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
100 |
-
response = response.replace('"', '')
|
101 |
-
st.write(f"{response}")
|
102 |
-
else:
|
103 |
-
st.write("Please enter a valid prompt.")
|
|
|
1 |
+
import gradio as gr
|
2 |
from peft import PeftModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import os
|
|
|
15 |
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
|
|
18 |
def load_model():
|
19 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, use_auth_token=hf_token)
|
20 |
model = PeftModel.from_pretrained(base_model, model_id, use_auth_token=hf_token).to(device)
|
|
|
72 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
73 |
return prompt
|
74 |
|
75 |
+
def generate_headlines(content, video_summary):
|
76 |
+
if not content.strip():
|
77 |
+
return "Please enter valid article content."
|
78 |
+
|
79 |
+
if not video_summary.strip():
|
80 |
+
video_summary = ''
|
81 |
+
|
82 |
+
prompt = process_prompt(tokenizer, content, video_summary, guidelines)
|
83 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
84 |
+
|
85 |
+
headlines = []
|
86 |
+
for i in range(5):
|
87 |
+
outputs = model.generate(**inputs,
|
88 |
+
max_new_tokens=60,
|
89 |
+
num_return_sequences=1,
|
90 |
+
do_sample=True,
|
91 |
+
temperature=0.7)
|
92 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
93 |
+
response = response.replace('"', '')
|
94 |
+
headlines.append(f"Headline {i+1}: {response}")
|
95 |
+
|
96 |
+
return "\n\n".join(headlines)
|
97 |
|
98 |
+
# Create Gradio interface
|
99 |
+
demo = gr.Interface(
|
100 |
+
fn=generate_headlines,
|
101 |
+
inputs=[
|
102 |
+
gr.Textbox(label="Article Content", placeholder="Type the main content of the article here..."),
|
103 |
+
gr.Textbox(label="Video Summary (Optional)", placeholder="Type the summary of the video related to the article...")
|
104 |
+
],
|
105 |
+
outputs=gr.Textbox(label="Generated Headlines"),
|
106 |
+
title="Article Headline Writer",
|
107 |
+
description="Write catchy headlines from content and video summary."
|
108 |
+
)
|
109 |
|
110 |
+
if __name__ == "__main__":
|
111 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|