Spaces:
Sleeping
Sleeping
Hugo
commited on
Commit
·
e873032
1
Parent(s):
5daac35
gradio support
Browse files- app.py +36 -28
- app_streamlit.py +103 -0
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
from peft import PeftModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import os
|
@@ -15,7 +15,6 @@ openai_api_key = os.environ.get('OPENAI_API_KEY')
|
|
15 |
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
18 |
-
@st.cache_resource
|
19 |
def load_model():
|
20 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, use_auth_token=hf_token)
|
21 |
model = PeftModel.from_pretrained(base_model, model_id, use_auth_token=hf_token).to(device)
|
@@ -73,31 +72,40 @@ def process_prompt(tokenizer, content, video_summary = '', guidelines = None):
|
|
73 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
74 |
return prompt
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
if
|
85 |
-
|
86 |
-
if not video_summary.strip():
|
87 |
-
video_summary = ''
|
88 |
-
prompt = process_prompt(tokenizer, content, video_summary, guidelines)
|
89 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
90 |
-
|
91 |
-
st.write("### Generated 5 Potential Headlines:")
|
92 |
-
for i in range(5):
|
93 |
-
st.write(f"### Headline {i+1}")
|
94 |
-
outputs = model.generate(**inputs,
|
95 |
-
max_new_tokens=60,
|
96 |
-
num_return_sequences=1,
|
97 |
-
do_sample=True,
|
98 |
-
temperature=0.7)
|
99 |
-
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
100 |
-
response = response.replace('"', '')
|
101 |
-
st.write(f"{response}")
|
102 |
-
else:
|
103 |
-
st.write("Please enter a valid prompt.")
|
|
|
1 |
+
import gradio as gr
|
2 |
from peft import PeftModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import os
|
|
|
15 |
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
|
|
18 |
def load_model():
|
19 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, use_auth_token=hf_token)
|
20 |
model = PeftModel.from_pretrained(base_model, model_id, use_auth_token=hf_token).to(device)
|
|
|
72 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
73 |
return prompt
|
74 |
|
75 |
+
def generate_headlines(content, video_summary):
|
76 |
+
if not content.strip():
|
77 |
+
return "Please enter valid article content."
|
78 |
+
|
79 |
+
if not video_summary.strip():
|
80 |
+
video_summary = ''
|
81 |
+
|
82 |
+
prompt = process_prompt(tokenizer, content, video_summary, guidelines)
|
83 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
84 |
+
|
85 |
+
headlines = []
|
86 |
+
for i in range(5):
|
87 |
+
outputs = model.generate(**inputs,
|
88 |
+
max_new_tokens=60,
|
89 |
+
num_return_sequences=1,
|
90 |
+
do_sample=True,
|
91 |
+
temperature=0.7)
|
92 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
93 |
+
response = response.replace('"', '')
|
94 |
+
headlines.append(f"Headline {i+1}: {response}")
|
95 |
+
|
96 |
+
return "\n\n".join(headlines)
|
97 |
|
98 |
+
# Create Gradio interface
|
99 |
+
demo = gr.Interface(
|
100 |
+
fn=generate_headlines,
|
101 |
+
inputs=[
|
102 |
+
gr.Textbox(label="Article Content", placeholder="Type the main content of the article here..."),
|
103 |
+
gr.Textbox(label="Video Summary (Optional)", placeholder="Type the summary of the video related to the article...")
|
104 |
+
],
|
105 |
+
outputs=gr.Textbox(label="Generated Headlines"),
|
106 |
+
title="Article Headline Writer",
|
107 |
+
description="Write catchy headlines from content and video summary."
|
108 |
+
)
|
109 |
|
110 |
+
if __name__ == "__main__":
|
111 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_streamlit.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from peft import PeftModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import os
|
5 |
+
import os.path
|
6 |
+
import pickle
|
7 |
+
import torch
|
8 |
+
from openai import OpenAI
|
9 |
+
|
10 |
+
base_model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
11 |
+
model_id = "HiGenius/Headline-Generation-Model"
|
12 |
+
|
13 |
+
hf_token = os.environ.get('HF_TOKEN')
|
14 |
+
openai_api_key = os.environ.get('OPENAI_API_KEY')
|
15 |
+
|
16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def load_model():
|
20 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, use_auth_token=hf_token)
|
21 |
+
model = PeftModel.from_pretrained(base_model, model_id, use_auth_token=hf_token).to(device)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, use_auth_token=hf_token)
|
23 |
+
tokenizer.pad_token = tokenizer.eos_token
|
24 |
+
tokenizer.padding_side='left'
|
25 |
+
tokenizer.truncation_side="left"
|
26 |
+
|
27 |
+
return tokenizer, model
|
28 |
+
|
29 |
+
def summarize_content(content):
|
30 |
+
client = OpenAI(api_key=openai_api_key)
|
31 |
+
response = client.chat.completions.create(
|
32 |
+
model="gpt-4o",
|
33 |
+
messages=[
|
34 |
+
{"role": "system", "content": "Summarize the following article content concisely while preserving key information:"},
|
35 |
+
{"role": "user", "content": content}
|
36 |
+
],
|
37 |
+
max_tokens=600,
|
38 |
+
temperature=0.3
|
39 |
+
)
|
40 |
+
return response.choices[0].message.content
|
41 |
+
|
42 |
+
tokenizer, model = load_model()
|
43 |
+
|
44 |
+
guideline_path = "./guidelines.txt"
|
45 |
+
with open(guideline_path, 'r', encoding='utf-8') as f:
|
46 |
+
guidelines = f.read()
|
47 |
+
|
48 |
+
def process_prompt(tokenizer, content, video_summary = '', guidelines = None):
|
49 |
+
# Check token lengths
|
50 |
+
content_tokens = len(tokenizer.encode(content))
|
51 |
+
total_tokens = content_tokens
|
52 |
+
if video_summary:
|
53 |
+
total_tokens += len(tokenizer.encode(video_summary))
|
54 |
+
|
55 |
+
if content_tokens > 850 or total_tokens > 900:
|
56 |
+
content = summarize_content(content)
|
57 |
+
|
58 |
+
if guidelines:
|
59 |
+
system_prompt = "You are a helpful assistant that writes engaging headlines. To maximize engagement, you may follow these proven guidelines:\n" + guidelines
|
60 |
+
else:
|
61 |
+
system_prompt = "You are a helpful assistant that writes engaging headlines."
|
62 |
+
|
63 |
+
user_prompt = (
|
64 |
+
f"Below is an article and its accompanying video summary:\n\n"
|
65 |
+
f"Article Content:\n{content}\n\n"
|
66 |
+
f"Video Summary:\n{'None' if video_summary == '' else video_summary}\n\n"
|
67 |
+
f"Write ONLY a single engaging headline that accurately reflects the article. Do not include any additional text, explanations, or options."
|
68 |
+
)
|
69 |
+
messages = [
|
70 |
+
{"role": "system", "content": system_prompt},
|
71 |
+
{"role": "user", "content": user_prompt},
|
72 |
+
]
|
73 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
74 |
+
return prompt
|
75 |
+
|
76 |
+
|
77 |
+
st.title("Article Headline Writer")
|
78 |
+
st.write("Write a catchy headline from content and video summary.")
|
79 |
+
|
80 |
+
# Inputs for content and video summary
|
81 |
+
content = st.text_area("Enter the article content:", placeholder="Type the main content of the article here...")
|
82 |
+
video_summary = st.text_area("Enter the summary of the article's accompanying video (optional):", placeholder="Type the summary of the video related to the article...")
|
83 |
+
|
84 |
+
if st.button("Generate Headline"):
|
85 |
+
if content.strip():
|
86 |
+
if not video_summary.strip():
|
87 |
+
video_summary = ''
|
88 |
+
prompt = process_prompt(tokenizer, content, video_summary, guidelines)
|
89 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
90 |
+
|
91 |
+
st.write("### Generated 5 Potential Headlines:")
|
92 |
+
for i in range(5):
|
93 |
+
st.write(f"### Headline {i+1}")
|
94 |
+
outputs = model.generate(**inputs,
|
95 |
+
max_new_tokens=60,
|
96 |
+
num_return_sequences=1,
|
97 |
+
do_sample=True,
|
98 |
+
temperature=0.7)
|
99 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
100 |
+
response = response.replace('"', '')
|
101 |
+
st.write(f"{response}")
|
102 |
+
else:
|
103 |
+
st.write("Please enter a valid prompt.")
|