Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,538 Bytes
8168e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import torch
import gradio as gr
from hi_diffusers import HiDreamImagePipeline
from hi_diffusers import HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
MODEL_PREFIX = "HiDream-ai"
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
# Model configurations
MODEL_CONFIGS = {
"dev": {
"path": f"{MODEL_PREFIX}/HiDream-I1-Dev",
"guidance_scale": 0.0,
"num_inference_steps": 28,
"shift": 6.0,
"scheduler": FlashFlowMatchEulerDiscreteScheduler
},
"full": {
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
"guidance_scale": 5.0,
"num_inference_steps": 50,
"shift": 3.0,
"scheduler": FlowUniPCMultistepScheduler
},
"fast": {
"path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
"guidance_scale": 0.0,
"num_inference_steps": 16,
"shift": 3.0,
"scheduler": FlashFlowMatchEulerDiscreteScheduler
}
}
# Resolution options
RESOLUTION_OPTIONS = [
"1024 × 1024 (Square)",
"768 × 1360 (Portrait)",
"1360 × 768 (Landscape)",
"880 × 1168 (Portrait)",
"1168 × 880 (Landscape)",
"1248 × 832 (Landscape)",
"832 × 1248 (Portrait)"
]
# Load models
def load_models(model_type):
config = MODEL_CONFIGS[model_type]
pretrained_model_name_or_path = config["path"]
scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=1000, shift=config["shift"], use_dynamic_shifting=False)
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
LLAMA_MODEL_NAME,
use_fast=False)
text_encoder_4 = LlamaForCausalLM.from_pretrained(
LLAMA_MODEL_NAME,
output_hidden_states=True,
output_attentions=True,
torch_dtype=torch.bfloat16).to("cuda")
transformer = HiDreamImageTransformer2DModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="transformer",
torch_dtype=torch.bfloat16).to("cuda")
pipe = HiDreamImagePipeline.from_pretrained(
pretrained_model_name_or_path,
scheduler=scheduler,
tokenizer_4=tokenizer_4,
text_encoder_4=text_encoder_4,
torch_dtype=torch.bfloat16
).to("cuda", torch.bfloat16)
pipe.transformer = transformer
return pipe, config
# Parse resolution string to get height and width
def parse_resolution(resolution_str):
if "1024 × 1024" in resolution_str:
return 1024, 1024
elif "768 × 1360" in resolution_str:
return 768, 1360
elif "1360 × 768" in resolution_str:
return 1360, 768
elif "880 × 1168" in resolution_str:
return 880, 1168
elif "1168 × 880" in resolution_str:
return 1168, 880
elif "1248 × 832" in resolution_str:
return 1248, 832
elif "832 × 1248" in resolution_str:
return 832, 1248
else:
return 1024, 1024 # Default fallback
# Generate image function
def generate_image(model_type, prompt, resolution, seed):
global pipe, current_model
# Get configuration for current model
config = MODEL_CONFIGS[model_type]
guidance_scale = config["guidance_scale"]
num_inference_steps = config["num_inference_steps"]
# Parse resolution
height, width = parse_resolution(resolution)
# Handle seed
if seed == -1:
seed = torch.randint(0, 1000000, (1,)).item()
generator = torch.Generator("cuda").manual_seed(seed)
images = pipe(
prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=generator
).images
return images[0], seed
# Initialize with default model
print("Loading default model (full)...")
current_model = "fast"
pipe, _ = load_models(current_model)
print("Model loaded successfully!")
# Create Gradio interface
with gr.Blocks(title="HiDream Image Generator") as demo:
gr.Markdown("# HiDream Image Generator")
with gr.Row():
with gr.Column():
model_type = gr.Radio(
choices=list(MODEL_CONFIGS.keys()),
value="full",
label="Model Type",
info="Select model variant"
)
prompt = gr.Textbox(
label="Prompt",
placeholder="A cat holding a sign that says \"Hi-Dreams.ai\".",
lines=3
)
resolution = gr.Radio(
choices=RESOLUTION_OPTIONS,
value=RESOLUTION_OPTIONS[0],
label="Resolution",
info="Select image resolution"
)
seed = gr.Number(
label="Seed (use -1 for random)",
value=-1,
precision=0
)
generate_btn = gr.Button("Generate Image")
seed_used = gr.Number(label="Seed Used", interactive=False)
with gr.Column():
output_image = gr.Image(label="Generated Image", type="pil")
generate_btn.click(
fn=generate_image,
inputs=[model_type, prompt, resolution, seed],
outputs=[output_image, seed_used]
)
# Launch app
if __name__ == "__main__":
demo.launch()
|