File size: 5,538 Bytes
8168e43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import gradio as gr
from hi_diffusers import HiDreamImagePipeline
from hi_diffusers import HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast

MODEL_PREFIX = "HiDream-ai"
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"

# Model configurations
MODEL_CONFIGS = {
    "dev": {
        "path": f"{MODEL_PREFIX}/HiDream-I1-Dev",
        "guidance_scale": 0.0,
        "num_inference_steps": 28,
        "shift": 6.0,
        "scheduler": FlashFlowMatchEulerDiscreteScheduler
    },
    "full": {
        "path": f"{MODEL_PREFIX}/HiDream-I1-Full",
        "guidance_scale": 5.0,
        "num_inference_steps": 50,
        "shift": 3.0,
        "scheduler": FlowUniPCMultistepScheduler
    },
    "fast": {
        "path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
        "guidance_scale": 0.0,
        "num_inference_steps": 16,
        "shift": 3.0,
        "scheduler": FlashFlowMatchEulerDiscreteScheduler
    }
}

# Resolution options
RESOLUTION_OPTIONS = [
    "1024 × 1024 (Square)",
    "768 × 1360 (Portrait)",
    "1360 × 768 (Landscape)",
    "880 × 1168 (Portrait)",
    "1168 × 880 (Landscape)",
    "1248 × 832 (Landscape)",
    "832 × 1248 (Portrait)"
]

# Load models
def load_models(model_type):
    config = MODEL_CONFIGS[model_type]
    pretrained_model_name_or_path = config["path"]
    scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=1000, shift=config["shift"], use_dynamic_shifting=False)
    
    tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
        LLAMA_MODEL_NAME,
        use_fast=False)
    
    text_encoder_4 = LlamaForCausalLM.from_pretrained(
        LLAMA_MODEL_NAME,
        output_hidden_states=True,
        output_attentions=True,
        torch_dtype=torch.bfloat16).to("cuda")

    transformer = HiDreamImageTransformer2DModel.from_pretrained(
        pretrained_model_name_or_path, 
        subfolder="transformer", 
        torch_dtype=torch.bfloat16).to("cuda")

    pipe = HiDreamImagePipeline.from_pretrained(
        pretrained_model_name_or_path, 
        scheduler=scheduler,
        tokenizer_4=tokenizer_4,
        text_encoder_4=text_encoder_4,
        torch_dtype=torch.bfloat16
    ).to("cuda", torch.bfloat16)
    pipe.transformer = transformer
    
    return pipe, config

# Parse resolution string to get height and width
def parse_resolution(resolution_str):
    if "1024 × 1024" in resolution_str:
        return 1024, 1024
    elif "768 × 1360" in resolution_str:
        return 768, 1360
    elif "1360 × 768" in resolution_str:
        return 1360, 768
    elif "880 × 1168" in resolution_str:
        return 880, 1168
    elif "1168 × 880" in resolution_str:
        return 1168, 880
    elif "1248 × 832" in resolution_str:
        return 1248, 832
    elif "832 × 1248" in resolution_str:
        return 832, 1248
    else:
        return 1024, 1024  # Default fallback

# Generate image function
def generate_image(model_type, prompt, resolution, seed):
    global pipe, current_model

    # Get configuration for current model
    config = MODEL_CONFIGS[model_type]
    guidance_scale = config["guidance_scale"]
    num_inference_steps = config["num_inference_steps"]
    
    # Parse resolution
    height, width = parse_resolution(resolution)
    
    # Handle seed
    if seed == -1:
        seed = torch.randint(0, 1000000, (1,)).item()
    
    generator = torch.Generator("cuda").manual_seed(seed)
    
    images = pipe(
        prompt,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=1,
        generator=generator
    ).images
    
    return images[0], seed

# Initialize with default model
print("Loading default model (full)...")
current_model = "fast"
pipe, _ = load_models(current_model)
print("Model loaded successfully!")

# Create Gradio interface
with gr.Blocks(title="HiDream Image Generator") as demo:
    gr.Markdown("# HiDream Image Generator")
    
    with gr.Row():
        with gr.Column():
            model_type = gr.Radio(
                choices=list(MODEL_CONFIGS.keys()),
                value="full",
                label="Model Type",
                info="Select model variant"
            )
            
            prompt = gr.Textbox(
                label="Prompt", 
                placeholder="A cat holding a sign that says \"Hi-Dreams.ai\".", 
                lines=3
            )
            
            resolution = gr.Radio(
                choices=RESOLUTION_OPTIONS,
                value=RESOLUTION_OPTIONS[0],
                label="Resolution",
                info="Select image resolution"
            )
            
            seed = gr.Number(
                label="Seed (use -1 for random)", 
                value=-1, 
                precision=0
            )
            
            generate_btn = gr.Button("Generate Image")
            seed_used = gr.Number(label="Seed Used", interactive=False)
            
        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="pil")
    
    generate_btn.click(
        fn=generate_image,
        inputs=[model_type, prompt, resolution, seed],
        outputs=[output_image, seed_used]
    )

# Launch app
if __name__ == "__main__":
    demo.launch()