Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from hi_diffusers import HiDreamImagePipeline
|
4 |
+
from hi_diffusers import HiDreamImageTransformer2DModel
|
5 |
+
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
6 |
+
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
|
7 |
+
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
8 |
+
|
9 |
+
MODEL_PREFIX = "HiDream-ai"
|
10 |
+
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
11 |
+
|
12 |
+
# Model configurations
|
13 |
+
MODEL_CONFIGS = {
|
14 |
+
"dev": {
|
15 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Dev",
|
16 |
+
"guidance_scale": 0.0,
|
17 |
+
"num_inference_steps": 28,
|
18 |
+
"shift": 6.0,
|
19 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler
|
20 |
+
},
|
21 |
+
"full": {
|
22 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
|
23 |
+
"guidance_scale": 5.0,
|
24 |
+
"num_inference_steps": 50,
|
25 |
+
"shift": 3.0,
|
26 |
+
"scheduler": FlowUniPCMultistepScheduler
|
27 |
+
},
|
28 |
+
"fast": {
|
29 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
|
30 |
+
"guidance_scale": 0.0,
|
31 |
+
"num_inference_steps": 16,
|
32 |
+
"shift": 3.0,
|
33 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
# Resolution options
|
38 |
+
RESOLUTION_OPTIONS = [
|
39 |
+
"1024 × 1024 (Square)",
|
40 |
+
"768 × 1360 (Portrait)",
|
41 |
+
"1360 × 768 (Landscape)",
|
42 |
+
"880 × 1168 (Portrait)",
|
43 |
+
"1168 × 880 (Landscape)",
|
44 |
+
"1248 × 832 (Landscape)",
|
45 |
+
"832 × 1248 (Portrait)"
|
46 |
+
]
|
47 |
+
|
48 |
+
# Load models
|
49 |
+
def load_models(model_type):
|
50 |
+
config = MODEL_CONFIGS[model_type]
|
51 |
+
pretrained_model_name_or_path = config["path"]
|
52 |
+
scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=1000, shift=config["shift"], use_dynamic_shifting=False)
|
53 |
+
|
54 |
+
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
|
55 |
+
LLAMA_MODEL_NAME,
|
56 |
+
use_fast=False)
|
57 |
+
|
58 |
+
text_encoder_4 = LlamaForCausalLM.from_pretrained(
|
59 |
+
LLAMA_MODEL_NAME,
|
60 |
+
output_hidden_states=True,
|
61 |
+
output_attentions=True,
|
62 |
+
torch_dtype=torch.bfloat16).to("cuda")
|
63 |
+
|
64 |
+
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
65 |
+
pretrained_model_name_or_path,
|
66 |
+
subfolder="transformer",
|
67 |
+
torch_dtype=torch.bfloat16).to("cuda")
|
68 |
+
|
69 |
+
pipe = HiDreamImagePipeline.from_pretrained(
|
70 |
+
pretrained_model_name_or_path,
|
71 |
+
scheduler=scheduler,
|
72 |
+
tokenizer_4=tokenizer_4,
|
73 |
+
text_encoder_4=text_encoder_4,
|
74 |
+
torch_dtype=torch.bfloat16
|
75 |
+
).to("cuda", torch.bfloat16)
|
76 |
+
pipe.transformer = transformer
|
77 |
+
|
78 |
+
return pipe, config
|
79 |
+
|
80 |
+
# Parse resolution string to get height and width
|
81 |
+
def parse_resolution(resolution_str):
|
82 |
+
if "1024 × 1024" in resolution_str:
|
83 |
+
return 1024, 1024
|
84 |
+
elif "768 × 1360" in resolution_str:
|
85 |
+
return 768, 1360
|
86 |
+
elif "1360 × 768" in resolution_str:
|
87 |
+
return 1360, 768
|
88 |
+
elif "880 × 1168" in resolution_str:
|
89 |
+
return 880, 1168
|
90 |
+
elif "1168 × 880" in resolution_str:
|
91 |
+
return 1168, 880
|
92 |
+
elif "1248 × 832" in resolution_str:
|
93 |
+
return 1248, 832
|
94 |
+
elif "832 × 1248" in resolution_str:
|
95 |
+
return 832, 1248
|
96 |
+
else:
|
97 |
+
return 1024, 1024 # Default fallback
|
98 |
+
|
99 |
+
# Generate image function
|
100 |
+
def generate_image(model_type, prompt, resolution, seed):
|
101 |
+
global pipe, current_model
|
102 |
+
|
103 |
+
# Get configuration for current model
|
104 |
+
config = MODEL_CONFIGS[model_type]
|
105 |
+
guidance_scale = config["guidance_scale"]
|
106 |
+
num_inference_steps = config["num_inference_steps"]
|
107 |
+
|
108 |
+
# Parse resolution
|
109 |
+
height, width = parse_resolution(resolution)
|
110 |
+
|
111 |
+
# Handle seed
|
112 |
+
if seed == -1:
|
113 |
+
seed = torch.randint(0, 1000000, (1,)).item()
|
114 |
+
|
115 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
116 |
+
|
117 |
+
images = pipe(
|
118 |
+
prompt,
|
119 |
+
height=height,
|
120 |
+
width=width,
|
121 |
+
guidance_scale=guidance_scale,
|
122 |
+
num_inference_steps=num_inference_steps,
|
123 |
+
num_images_per_prompt=1,
|
124 |
+
generator=generator
|
125 |
+
).images
|
126 |
+
|
127 |
+
return images[0], seed
|
128 |
+
|
129 |
+
# Initialize with default model
|
130 |
+
print("Loading default model (full)...")
|
131 |
+
current_model = "fast"
|
132 |
+
pipe, _ = load_models(current_model)
|
133 |
+
print("Model loaded successfully!")
|
134 |
+
|
135 |
+
# Create Gradio interface
|
136 |
+
with gr.Blocks(title="HiDream Image Generator") as demo:
|
137 |
+
gr.Markdown("# HiDream Image Generator")
|
138 |
+
|
139 |
+
with gr.Row():
|
140 |
+
with gr.Column():
|
141 |
+
model_type = gr.Radio(
|
142 |
+
choices=list(MODEL_CONFIGS.keys()),
|
143 |
+
value="full",
|
144 |
+
label="Model Type",
|
145 |
+
info="Select model variant"
|
146 |
+
)
|
147 |
+
|
148 |
+
prompt = gr.Textbox(
|
149 |
+
label="Prompt",
|
150 |
+
placeholder="A cat holding a sign that says \"Hi-Dreams.ai\".",
|
151 |
+
lines=3
|
152 |
+
)
|
153 |
+
|
154 |
+
resolution = gr.Radio(
|
155 |
+
choices=RESOLUTION_OPTIONS,
|
156 |
+
value=RESOLUTION_OPTIONS[0],
|
157 |
+
label="Resolution",
|
158 |
+
info="Select image resolution"
|
159 |
+
)
|
160 |
+
|
161 |
+
seed = gr.Number(
|
162 |
+
label="Seed (use -1 for random)",
|
163 |
+
value=-1,
|
164 |
+
precision=0
|
165 |
+
)
|
166 |
+
|
167 |
+
generate_btn = gr.Button("Generate Image")
|
168 |
+
seed_used = gr.Number(label="Seed Used", interactive=False)
|
169 |
+
|
170 |
+
with gr.Column():
|
171 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
172 |
+
|
173 |
+
generate_btn.click(
|
174 |
+
fn=generate_image,
|
175 |
+
inputs=[model_type, prompt, resolution, seed],
|
176 |
+
outputs=[output_image, seed_used]
|
177 |
+
)
|
178 |
+
|
179 |
+
# Launch app
|
180 |
+
if __name__ == "__main__":
|
181 |
+
demo.launch()
|