Abhaykoul's picture
Update app.py
1a0446e verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
import re
# Model configuration
model_name = "HelpingAI/Dhanishtha-2.0-preview"
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the model and tokenizer"""
global model, tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Ensure pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
print("Model loaded successfully!")
def format_thinking_text(text):
"""Format text to properly display <think> and <ser> tags in Gradio with styled borders"""
if not text:
return text
# More sophisticated formatting for thinking and ser blocks
formatted_text = text
# Handle thinking blocks with blue styling
thinking_pattern = r'<think>(.*?)</think>'
def replace_thinking_block(match):
thinking_content = match.group(1).strip()
return f'''
<div style="border-left: 4px solid #4a90e2; background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(74, 144, 226, 0.15); border: 1px solid rgba(74, 144, 226, 0.2);">
<div style="color: #4a90e2; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">๐Ÿง </span> Think
</div>
<div style="color: #2c3e50; line-height: 1.6; font-size: 14px;">
{thinking_content}
</div>
</div>
'''
# Handle ser blocks with green styling
ser_pattern = r'<ser>(.*?)</ser>'
def replace_ser_block(match):
ser_content = match.group(1).strip()
return f'''
<div style="border-left: 4px solid #28a745; background: linear-gradient(135deg, #f0fff4 0%, #e6ffed 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(40, 167, 69, 0.15); border: 1px solid rgba(40, 167, 69, 0.2);">
<div style="color: #28a745; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">๐Ÿ’š</span> Ser
</div>
<div style="color: #155724; line-height: 1.6; font-size: 14px;">
{ser_content}
</div>
</div>
'''
# Apply both patterns
formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL)
formatted_text = re.sub(ser_pattern, replace_ser_block, formatted_text, flags=re.DOTALL)
# Clean up any remaining raw tags
formatted_text = re.sub(r'</?(?:think|ser)>', '', formatted_text)
return formatted_text.strip()
@spaces.GPU()
def generate_response(message, history, max_tokens, temperature, top_p):
"""Generate streaming response without threading"""
global model, tokenizer
if model is None or tokenizer is None:
yield "Model is still loading. Please wait..."
return
# Prepare conversation history
messages = []
# Handle both old tuple format and new message format
for item in history:
if isinstance(item, dict):
# New message format
messages.append(item)
elif isinstance(item, (list, tuple)) and len(item) == 2:
# Old tuple format
user_msg, assistant_msg = item
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Apply chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
try:
with torch.no_grad():
# Use transformers streaming with custom approach
generated_text = ""
current_input_ids = model_inputs["input_ids"]
current_attention_mask = model_inputs["attention_mask"]
for _ in range(max_tokens):
# Generate next token
outputs = model(
input_ids=current_input_ids,
attention_mask=current_attention_mask,
use_cache=True
)
# Get logits for the last token
logits = outputs.logits[0, -1, :]
# Apply temperature
if temperature != 1.0:
logits = logits / temperature
# Apply top-p sampling
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
sorted_indices_to_remove[0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = float('-inf')
# Sample next token
probs = torch.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Check for EOS token
if next_token.item() == tokenizer.eos_token_id:
break
# Decode the new token (preserve special tokens like <think>)
new_token_text = tokenizer.decode(next_token, skip_special_tokens=False)
generated_text += new_token_text
# Format and yield the current text
formatted_text = format_thinking_text(generated_text)
yield formatted_text
# Update inputs for next iteration
current_input_ids = torch.cat([current_input_ids, next_token.unsqueeze(0)], dim=-1)
current_attention_mask = torch.cat([current_attention_mask, torch.ones((1, 1), device=model.device)], dim=-1)
except Exception as e:
yield f"Error generating response: {str(e)}"
return
# Final yield with complete formatted text
final_text = format_thinking_text(generated_text) if generated_text else "No response generated."
yield final_text
def chat_interface(message, history, max_tokens, temperature, top_p):
"""Main chat interface with improved streaming"""
if not message.strip():
return history, ""
# Add user message to history in the new message format
history.append({"role": "user", "content": message})
# Add placeholder for assistant response
history.append({"role": "assistant", "content": ""})
# Generate response with streaming
for partial_response in generate_response(message, history[:-2], max_tokens, temperature, top_p):
history[-1]["content"] = partial_response
yield history, ""
return history, ""
# Load model on startup
print("Initializing model...")
load_model()
# Minimal CSS - only for think and ser blocks
custom_css = """
/* Only essential styling for think and ser blocks */
.chatbot {
font-family: system-ui, -apple-system, sans-serif;
}
"""
# Create advanced Gradio interface with professional design
with gr.Blocks(
title="๏ฟฝ Dhanishtha-2.0-preview | Advanced Reasoning AI",
theme=gr.themes.Soft(),
css=custom_css,
head="""
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="Chat with Dhanishtha-2.0-preview - The world's first LLM with multi-step reasoning capabilities">
"""
) as demo:
# Simple Header
gr.Markdown(
"""
# ๐Ÿง  Dhanishtha-2.0-preview Chat
Chat with the **HelpingAI/Dhanishtha-2.0-preview** model - Advanced Reasoning AI with Multi-Step Thinking
### Features:
- ๐Ÿง  **Think Blocks**: Internal reasoning process (blue styling)
- ๐Ÿ’š **Ser Blocks**: Emotional understanding (green styling)
- โšก **Real-time Streaming**: Token-by-token generation
- ๐ŸŽฏ **Step-by-step Solutions**: Detailed problem solving
"""
)
# Main Chat Interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
type='messages',
height=600,
show_copy_button=True,
show_share_button=True,
avatar_images=("๐Ÿ‘ค", "๐Ÿค–"),
render_markdown=True,
sanitize_html=False, # Allow HTML for thinking and ser blocks
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
]
)
# Simple input section
with gr.Row():
msg = gr.Textbox(
container=False,
placeholder="Ask me anything! I'll show you my thinking and reasoning process...",
label="Message",
autofocus=True,
lines=1,
max_lines=3,
scale=7
)
send_btn = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("Clear", variant="secondary", scale=1)
with gr.Column(scale=1, min_width=300):
gr.Markdown("### โš™๏ธ Generation Parameters")
max_tokens = gr.Slider(
minimum=50,
maximum=8192,
value=2048,
step=50,
label="Max Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher = more creative, Lower = more focused"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold"
)
gr.Markdown("### ๐Ÿ“Š Model Info")
gr.Markdown(
"""
**Model**: HelpingAI/Dhanishtha-2.0-preview
**Type**: Reasoning LLM with thinking blocks
**Features**: Multi-step reasoning, self-evaluation
**Blocks**: Think (blue) + Ser (green)
"""
)
# Examples Section
gr.Examples(
examples=[
["Solve this step by step: What is 15% of 240?"],
["How many letter 'r' are in the words 'strawberry' and 'raspberry'?"],
["Hello! Can you introduce yourself and show me how you think?"],
["Explain quantum entanglement in simple terms"],
["Write a Python function to find the factorial of a number"],
["What are the pros and cons of renewable energy?"],
["What's the difference between AI and machine learning?"],
["Create a haiku about artificial intelligence"],
["Why is the sky blue? Explain using physics principles"],
["Compare bubble sort and quick sort algorithms"]
],
inputs=msg,
label="Example Prompts - Try these to see the thinking process!",
examples_per_page=5
)
# Event handlers
def clear_chat():
"""Clear the chat history"""
return [], ""
# Message submission events
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1,
show_progress="minimal"
)
send_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1,
show_progress="minimal"
)
# Clear chat event
clear_btn.click(
clear_chat,
outputs=[chatbot, msg],
show_progress=False
)
# Simple Footer
gr.Markdown(
"""
---
### ๐Ÿ”ง Technical Details
- **Model**: HelpingAI/Dhanishtha-2.0-preview
- **Reasoning**: Multi-step thinking with `<think>` and `<ser>` blocks
**Note**: This interface streams responses token by token and formats thinking blocks for better readability.
"""
)
if __name__ == "__main__":
# Launch with enhanced configuration
demo.queue(
max_size=20,
default_concurrency_limit=1
).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
quiet=False
)