File size: 13,282 Bytes
ac24bf9
 
8e5bed7
ac24bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b52b9c6
ac24bf9
 
 
b52b9c6
ac24bf9
 
b52b9c6
ac24bf9
 
 
 
a338ea6
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
b52b9c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
b52b9c6
ac24bf9
b52b9c6
 
ac24bf9
 
 
 
 
8e5bed7
ac24bf9
8e5bed7
ac24bf9
 
 
8e5bed7
ac24bf9
 
a96f10e
 
 
 
 
 
 
 
 
 
 
 
8e5bed7
ac24bf9
 
8e5bed7
ac24bf9
 
 
 
 
 
8e5bed7
ac24bf9
 
8e5bed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
8e5bed7
 
ac24bf9
 
8e5bed7
ac24bf9
 
 
a96f10e
 
 
 
 
ac24bf9
 
a96f10e
 
ac24bf9
 
 
 
 
 
 
 
1a0446e
ac24bf9
1a0446e
7cbe8ed
1a0446e
ac24bf9
 
 
b52b9c6
ac24bf9
b52b9c6
8e5bed7
b52b9c6
 
 
 
 
ac24bf9
1a0446e
 
 
 
 
 
 
 
 
 
 
 
 
 
b52b9c6
 
a96f10e
8e5bed7
 
 
 
a96f10e
1a0446e
8e5bed7
 
a96f10e
8e5bed7
b52b9c6
8e5bed7
 
 
1a0446e
8e5bed7
 
1a0446e
a96f10e
1a0446e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5bed7
 
 
 
 
1a0446e
a96f10e
8e5bed7
 
 
 
 
 
 
1a0446e
a96f10e
8e5bed7
 
 
 
 
 
 
1a0446e
a96f10e
8e5bed7
 
1a0446e
 
 
 
 
 
 
 
b52b9c6
1a0446e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b52b9c6
ac24bf9
 
 
 
 
 
 
5e3eb6a
ac24bf9
 
 
 
 
 
 
5e3eb6a
ac24bf9
 
 
 
 
 
 
 
 
 
 
 
 
1a0446e
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
 
b52b9c6
ac24bf9
8e5bed7
 
ac24bf9
 
 
 
 
c5fbd5a
ac24bf9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
import re

# Model configuration
model_name = "HelpingAI/Dhanishtha-2.0-preview"

# Global variables for model and tokenizer
model = None
tokenizer = None

def load_model():
    """Load the model and tokenizer"""
    global model, tokenizer

    print("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    # Ensure pad token is set
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    print("Loading model...")
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype="auto",
        device_map="auto",
        trust_remote_code=True
    )

    print("Model loaded successfully!")

def format_thinking_text(text):
    """Format text to properly display <think> and <ser> tags in Gradio with styled borders"""
    if not text:
        return text

    # More sophisticated formatting for thinking and ser blocks
    formatted_text = text

    # Handle thinking blocks with blue styling
    thinking_pattern = r'<think>(.*?)</think>'

    def replace_thinking_block(match):
        thinking_content = match.group(1).strip()
        return f'''

<div style="border-left: 4px solid #4a90e2; background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(74, 144, 226, 0.15); border: 1px solid rgba(74, 144, 226, 0.2);">
<div style="color: #4a90e2; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">🧠</span> Think
</div>
<div style="color: #2c3e50; line-height: 1.6; font-size: 14px;">
{thinking_content}
</div>
</div>

'''

    # Handle ser blocks with green styling
    ser_pattern = r'<ser>(.*?)</ser>'

    def replace_ser_block(match):
        ser_content = match.group(1).strip()
        return f'''

<div style="border-left: 4px solid #28a745; background: linear-gradient(135deg, #f0fff4 0%, #e6ffed 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(40, 167, 69, 0.15); border: 1px solid rgba(40, 167, 69, 0.2);">
<div style="color: #28a745; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">πŸ’š</span> Ser
</div>
<div style="color: #155724; line-height: 1.6; font-size: 14px;">
{ser_content}
</div>
</div>

'''

    # Apply both patterns
    formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL)
    formatted_text = re.sub(ser_pattern, replace_ser_block, formatted_text, flags=re.DOTALL)

    # Clean up any remaining raw tags
    formatted_text = re.sub(r'</?(?:think|ser)>', '', formatted_text)

    return formatted_text.strip()

@spaces.GPU()
def generate_response(message, history, max_tokens, temperature, top_p):
    """Generate streaming response without threading"""
    global model, tokenizer

    if model is None or tokenizer is None:
        yield "Model is still loading. Please wait..."
        return

    # Prepare conversation history
    messages = []

    # Handle both old tuple format and new message format
    for item in history:
        if isinstance(item, dict):
            # New message format
            messages.append(item)
        elif isinstance(item, (list, tuple)) and len(item) == 2:
            # Old tuple format
            user_msg, assistant_msg = item
            messages.append({"role": "user", "content": user_msg})
            if assistant_msg:
                messages.append({"role": "assistant", "content": assistant_msg})

    # Add current message
    messages.append({"role": "user", "content": message})

    # Apply chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    try:
        with torch.no_grad():
            # Use transformers streaming with custom approach
            generated_text = ""
            current_input_ids = model_inputs["input_ids"]
            current_attention_mask = model_inputs["attention_mask"]

            for _ in range(max_tokens):
                # Generate next token
                outputs = model(
                    input_ids=current_input_ids,
                    attention_mask=current_attention_mask,
                    use_cache=True
                )

                # Get logits for the last token
                logits = outputs.logits[0, -1, :]

                # Apply temperature
                if temperature != 1.0:
                    logits = logits / temperature

                # Apply top-p sampling
                if top_p < 1.0:
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                    cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                    sorted_indices_to_remove = cumulative_probs > top_p
                    sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
                    sorted_indices_to_remove[0] = 0
                    indices_to_remove = sorted_indices[sorted_indices_to_remove]
                    logits[indices_to_remove] = float('-inf')

                # Sample next token
                probs = torch.softmax(logits, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1)

                # Check for EOS token
                if next_token.item() == tokenizer.eos_token_id:
                    break

                # Decode the new token (preserve special tokens like <think>)
                new_token_text = tokenizer.decode(next_token, skip_special_tokens=False)
                generated_text += new_token_text

                # Format and yield the current text
                formatted_text = format_thinking_text(generated_text)
                yield formatted_text

                # Update inputs for next iteration
                current_input_ids = torch.cat([current_input_ids, next_token.unsqueeze(0)], dim=-1)
                current_attention_mask = torch.cat([current_attention_mask, torch.ones((1, 1), device=model.device)], dim=-1)

    except Exception as e:
        yield f"Error generating response: {str(e)}"
        return

    # Final yield with complete formatted text
    final_text = format_thinking_text(generated_text) if generated_text else "No response generated."
    yield final_text

def chat_interface(message, history, max_tokens, temperature, top_p):
    """Main chat interface with improved streaming"""
    if not message.strip():
        return history, ""

    # Add user message to history in the new message format
    history.append({"role": "user", "content": message})

    # Add placeholder for assistant response
    history.append({"role": "assistant", "content": ""})

    # Generate response with streaming
    for partial_response in generate_response(message, history[:-2], max_tokens, temperature, top_p):
        history[-1]["content"] = partial_response
        yield history, ""

    return history, ""

# Load model on startup
print("Initializing model...")
load_model()

# Minimal CSS - only for think and ser blocks
custom_css = """
/* Only essential styling for think and ser blocks */
.chatbot {
    font-family: system-ui, -apple-system, sans-serif;
}
"""

# Create advanced Gradio interface with professional design
with gr.Blocks(
    title="οΏ½ Dhanishtha-2.0-preview | Advanced Reasoning AI",
    theme=gr.themes.Soft(),
    css=custom_css,
    head="""
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta name="description" content="Chat with Dhanishtha-2.0-preview - The world's first LLM with multi-step reasoning capabilities">
    """
) as demo:
    # Simple Header
    gr.Markdown(
        """
        # 🧠 Dhanishtha-2.0-preview Chat

        Chat with the **HelpingAI/Dhanishtha-2.0-preview** model - Advanced Reasoning AI with Multi-Step Thinking

        ### Features:
        - 🧠 **Think Blocks**: Internal reasoning process (blue styling)
        - πŸ’š **Ser Blocks**: Emotional understanding (green styling)
        - ⚑ **Real-time Streaming**: Token-by-token generation
        - 🎯 **Step-by-step Solutions**: Detailed problem solving
        """
    )

    # Main Chat Interface
    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(
                [],
                elem_id="chatbot",
                type='messages',
                height=600,
                show_copy_button=True,
                show_share_button=True,
                avatar_images=("πŸ‘€", "πŸ€–"),
                render_markdown=True,
                sanitize_html=False,  # Allow HTML for thinking and ser blocks
                latex_delimiters=[
                    {"left": "$$", "right": "$$", "display": True},
                    {"left": "$", "right": "$", "display": False}
                ]
            )

            # Simple input section
            with gr.Row():
                msg = gr.Textbox(
                    container=False,
                    placeholder="Ask me anything! I'll show you my thinking and reasoning process...",
                    label="Message",
                    autofocus=True,
                    lines=1,
                    max_lines=3,
                    scale=7
                )
                send_btn = gr.Button("Send", variant="primary", scale=1)
                clear_btn = gr.Button("Clear", variant="secondary", scale=1)

        with gr.Column(scale=1, min_width=300):
            gr.Markdown("### βš™οΈ Generation Parameters")

            max_tokens = gr.Slider(
                minimum=50,
                maximum=8192,
                value=2048,
                step=50,
                label="Max Tokens",
                info="Maximum number of tokens to generate"
            )

            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=0.7,
                step=0.1,
                label="Temperature",
                info="Higher = more creative, Lower = more focused"
            )

            top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.9,
                step=0.05,
                label="Top-p",
                info="Nucleus sampling threshold"
            )

            gr.Markdown("### πŸ“Š Model Info")
            gr.Markdown(
                """
                **Model**: HelpingAI/Dhanishtha-2.0-preview
                **Type**: Reasoning LLM with thinking blocks
                **Features**: Multi-step reasoning, self-evaluation
                **Blocks**: Think (blue) + Ser (green)
                """
            )
    
    # Examples Section
    gr.Examples(
        examples=[
            ["Solve this step by step: What is 15% of 240?"],
            ["How many letter 'r' are in the words 'strawberry' and 'raspberry'?"],
            ["Hello! Can you introduce yourself and show me how you think?"],
            ["Explain quantum entanglement in simple terms"],
            ["Write a Python function to find the factorial of a number"],
            ["What are the pros and cons of renewable energy?"],
            ["What's the difference between AI and machine learning?"],
            ["Create a haiku about artificial intelligence"],
            ["Why is the sky blue? Explain using physics principles"],
            ["Compare bubble sort and quick sort algorithms"]
        ],
        inputs=msg,
        label="Example Prompts - Try these to see the thinking process!",
        examples_per_page=5
    )

    # Event handlers
    def clear_chat():
        """Clear the chat history"""
        return [], ""

    # Message submission events
    msg.submit(
        chat_interface,
        inputs=[msg, chatbot, max_tokens, temperature, top_p],
        outputs=[chatbot, msg],
        concurrency_limit=1,
        show_progress="minimal"
    )

    send_btn.click(
        chat_interface,
        inputs=[msg, chatbot, max_tokens, temperature, top_p],
        outputs=[chatbot, msg],
        concurrency_limit=1,
        show_progress="minimal"
    )

    # Clear chat event
    clear_btn.click(
        clear_chat,
        outputs=[chatbot, msg],
        show_progress=False
    )

    # Simple Footer
    gr.Markdown(
        """
        ---
        ### πŸ”§ Technical Details
        - **Model**: HelpingAI/Dhanishtha-2.0-preview
        - **Reasoning**: Multi-step thinking with `<think>` and `<ser>` blocks

        **Note**: This interface streams responses token by token and formats thinking blocks for better readability.

        """
    )

if __name__ == "__main__":
    # Launch with enhanced configuration
    demo.queue(
        max_size=20,
        default_concurrency_limit=1
    ).launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        quiet=False
    )