Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,282 Bytes
ac24bf9 8e5bed7 ac24bf9 b52b9c6 ac24bf9 b52b9c6 ac24bf9 b52b9c6 ac24bf9 a338ea6 ac24bf9 b52b9c6 ac24bf9 b52b9c6 ac24bf9 b52b9c6 ac24bf9 8e5bed7 ac24bf9 8e5bed7 ac24bf9 8e5bed7 ac24bf9 a96f10e 8e5bed7 ac24bf9 8e5bed7 ac24bf9 8e5bed7 ac24bf9 8e5bed7 ac24bf9 8e5bed7 ac24bf9 8e5bed7 ac24bf9 a96f10e ac24bf9 a96f10e ac24bf9 1a0446e ac24bf9 1a0446e 7cbe8ed 1a0446e ac24bf9 b52b9c6 ac24bf9 b52b9c6 8e5bed7 b52b9c6 ac24bf9 1a0446e b52b9c6 a96f10e 8e5bed7 a96f10e 1a0446e 8e5bed7 a96f10e 8e5bed7 b52b9c6 8e5bed7 1a0446e 8e5bed7 1a0446e a96f10e 1a0446e 8e5bed7 1a0446e a96f10e 8e5bed7 1a0446e a96f10e 8e5bed7 1a0446e a96f10e 8e5bed7 1a0446e b52b9c6 1a0446e b52b9c6 ac24bf9 5e3eb6a ac24bf9 5e3eb6a ac24bf9 1a0446e ac24bf9 b52b9c6 ac24bf9 8e5bed7 ac24bf9 c5fbd5a ac24bf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
import re
# Model configuration
model_name = "HelpingAI/Dhanishtha-2.0-preview"
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the model and tokenizer"""
global model, tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Ensure pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
print("Model loaded successfully!")
def format_thinking_text(text):
"""Format text to properly display <think> and <ser> tags in Gradio with styled borders"""
if not text:
return text
# More sophisticated formatting for thinking and ser blocks
formatted_text = text
# Handle thinking blocks with blue styling
thinking_pattern = r'<think>(.*?)</think>'
def replace_thinking_block(match):
thinking_content = match.group(1).strip()
return f'''
<div style="border-left: 4px solid #4a90e2; background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(74, 144, 226, 0.15); border: 1px solid rgba(74, 144, 226, 0.2);">
<div style="color: #4a90e2; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">π§ </span> Think
</div>
<div style="color: #2c3e50; line-height: 1.6; font-size: 14px;">
{thinking_content}
</div>
</div>
'''
# Handle ser blocks with green styling
ser_pattern = r'<ser>(.*?)</ser>'
def replace_ser_block(match):
ser_content = match.group(1).strip()
return f'''
<div style="border-left: 4px solid #28a745; background: linear-gradient(135deg, #f0fff4 0%, #e6ffed 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(40, 167, 69, 0.15); border: 1px solid rgba(40, 167, 69, 0.2);">
<div style="color: #28a745; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">π</span> Ser
</div>
<div style="color: #155724; line-height: 1.6; font-size: 14px;">
{ser_content}
</div>
</div>
'''
# Apply both patterns
formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL)
formatted_text = re.sub(ser_pattern, replace_ser_block, formatted_text, flags=re.DOTALL)
# Clean up any remaining raw tags
formatted_text = re.sub(r'</?(?:think|ser)>', '', formatted_text)
return formatted_text.strip()
@spaces.GPU()
def generate_response(message, history, max_tokens, temperature, top_p):
"""Generate streaming response without threading"""
global model, tokenizer
if model is None or tokenizer is None:
yield "Model is still loading. Please wait..."
return
# Prepare conversation history
messages = []
# Handle both old tuple format and new message format
for item in history:
if isinstance(item, dict):
# New message format
messages.append(item)
elif isinstance(item, (list, tuple)) and len(item) == 2:
# Old tuple format
user_msg, assistant_msg = item
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Apply chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
try:
with torch.no_grad():
# Use transformers streaming with custom approach
generated_text = ""
current_input_ids = model_inputs["input_ids"]
current_attention_mask = model_inputs["attention_mask"]
for _ in range(max_tokens):
# Generate next token
outputs = model(
input_ids=current_input_ids,
attention_mask=current_attention_mask,
use_cache=True
)
# Get logits for the last token
logits = outputs.logits[0, -1, :]
# Apply temperature
if temperature != 1.0:
logits = logits / temperature
# Apply top-p sampling
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
sorted_indices_to_remove[0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = float('-inf')
# Sample next token
probs = torch.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Check for EOS token
if next_token.item() == tokenizer.eos_token_id:
break
# Decode the new token (preserve special tokens like <think>)
new_token_text = tokenizer.decode(next_token, skip_special_tokens=False)
generated_text += new_token_text
# Format and yield the current text
formatted_text = format_thinking_text(generated_text)
yield formatted_text
# Update inputs for next iteration
current_input_ids = torch.cat([current_input_ids, next_token.unsqueeze(0)], dim=-1)
current_attention_mask = torch.cat([current_attention_mask, torch.ones((1, 1), device=model.device)], dim=-1)
except Exception as e:
yield f"Error generating response: {str(e)}"
return
# Final yield with complete formatted text
final_text = format_thinking_text(generated_text) if generated_text else "No response generated."
yield final_text
def chat_interface(message, history, max_tokens, temperature, top_p):
"""Main chat interface with improved streaming"""
if not message.strip():
return history, ""
# Add user message to history in the new message format
history.append({"role": "user", "content": message})
# Add placeholder for assistant response
history.append({"role": "assistant", "content": ""})
# Generate response with streaming
for partial_response in generate_response(message, history[:-2], max_tokens, temperature, top_p):
history[-1]["content"] = partial_response
yield history, ""
return history, ""
# Load model on startup
print("Initializing model...")
load_model()
# Minimal CSS - only for think and ser blocks
custom_css = """
/* Only essential styling for think and ser blocks */
.chatbot {
font-family: system-ui, -apple-system, sans-serif;
}
"""
# Create advanced Gradio interface with professional design
with gr.Blocks(
title="οΏ½ Dhanishtha-2.0-preview | Advanced Reasoning AI",
theme=gr.themes.Soft(),
css=custom_css,
head="""
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="Chat with Dhanishtha-2.0-preview - The world's first LLM with multi-step reasoning capabilities">
"""
) as demo:
# Simple Header
gr.Markdown(
"""
# π§ Dhanishtha-2.0-preview Chat
Chat with the **HelpingAI/Dhanishtha-2.0-preview** model - Advanced Reasoning AI with Multi-Step Thinking
### Features:
- π§ **Think Blocks**: Internal reasoning process (blue styling)
- π **Ser Blocks**: Emotional understanding (green styling)
- β‘ **Real-time Streaming**: Token-by-token generation
- π― **Step-by-step Solutions**: Detailed problem solving
"""
)
# Main Chat Interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
type='messages',
height=600,
show_copy_button=True,
show_share_button=True,
avatar_images=("π€", "π€"),
render_markdown=True,
sanitize_html=False, # Allow HTML for thinking and ser blocks
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
]
)
# Simple input section
with gr.Row():
msg = gr.Textbox(
container=False,
placeholder="Ask me anything! I'll show you my thinking and reasoning process...",
label="Message",
autofocus=True,
lines=1,
max_lines=3,
scale=7
)
send_btn = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("Clear", variant="secondary", scale=1)
with gr.Column(scale=1, min_width=300):
gr.Markdown("### βοΈ Generation Parameters")
max_tokens = gr.Slider(
minimum=50,
maximum=8192,
value=2048,
step=50,
label="Max Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher = more creative, Lower = more focused"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold"
)
gr.Markdown("### π Model Info")
gr.Markdown(
"""
**Model**: HelpingAI/Dhanishtha-2.0-preview
**Type**: Reasoning LLM with thinking blocks
**Features**: Multi-step reasoning, self-evaluation
**Blocks**: Think (blue) + Ser (green)
"""
)
# Examples Section
gr.Examples(
examples=[
["Solve this step by step: What is 15% of 240?"],
["How many letter 'r' are in the words 'strawberry' and 'raspberry'?"],
["Hello! Can you introduce yourself and show me how you think?"],
["Explain quantum entanglement in simple terms"],
["Write a Python function to find the factorial of a number"],
["What are the pros and cons of renewable energy?"],
["What's the difference between AI and machine learning?"],
["Create a haiku about artificial intelligence"],
["Why is the sky blue? Explain using physics principles"],
["Compare bubble sort and quick sort algorithms"]
],
inputs=msg,
label="Example Prompts - Try these to see the thinking process!",
examples_per_page=5
)
# Event handlers
def clear_chat():
"""Clear the chat history"""
return [], ""
# Message submission events
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1,
show_progress="minimal"
)
send_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1,
show_progress="minimal"
)
# Clear chat event
clear_btn.click(
clear_chat,
outputs=[chatbot, msg],
show_progress=False
)
# Simple Footer
gr.Markdown(
"""
---
### π§ Technical Details
- **Model**: HelpingAI/Dhanishtha-2.0-preview
- **Reasoning**: Multi-step thinking with `<think>` and `<ser>` blocks
**Note**: This interface streams responses token by token and formats thinking blocks for better readability.
"""
)
if __name__ == "__main__":
# Launch with enhanced configuration
demo.queue(
max_size=20,
default_concurrency_limit=1
).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
quiet=False
) |