Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import spaces
|
5 |
+
import re
|
6 |
+
|
7 |
+
# Model configuration
|
8 |
+
model_name = "HelpingAI/Dhanishtha-2.0-preview"
|
9 |
+
|
10 |
+
# Global variables for model and tokenizer
|
11 |
+
model = None
|
12 |
+
tokenizer = None
|
13 |
+
|
14 |
+
def load_model():
|
15 |
+
"""Load the model and tokenizer"""
|
16 |
+
global model, tokenizer
|
17 |
+
|
18 |
+
print("Loading tokenizer...")
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
|
21 |
+
# Ensure pad token is set
|
22 |
+
if tokenizer.pad_token is None:
|
23 |
+
tokenizer.pad_token = tokenizer.eos_token
|
24 |
+
|
25 |
+
print("Loading model...")
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
model_name,
|
28 |
+
torch_dtype="auto",
|
29 |
+
device_map="auto",
|
30 |
+
trust_remote_code=True
|
31 |
+
)
|
32 |
+
|
33 |
+
print("Model loaded successfully!")
|
34 |
+
|
35 |
+
def format_thinking_text(text):
|
36 |
+
"""Format text to properly display <think> tags in Gradio with better styling"""
|
37 |
+
if not text:
|
38 |
+
return text
|
39 |
+
|
40 |
+
# More sophisticated formatting for thinking blocks
|
41 |
+
# Replace <think> and </think> tags with styled markdown
|
42 |
+
formatted_text = text
|
43 |
+
|
44 |
+
# Handle thinking blocks with proper markdown formatting
|
45 |
+
thinking_pattern = r'<think>(.*?)</think>'
|
46 |
+
|
47 |
+
def replace_thinking_block(match):
|
48 |
+
thinking_content = match.group(1).strip()
|
49 |
+
return f"\n\nπ **Thinking Process:**\n\n```\n{thinking_content}\n```\n\n"
|
50 |
+
|
51 |
+
formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL)
|
52 |
+
|
53 |
+
# Clean up any remaining raw tags that might not have been caught
|
54 |
+
formatted_text = re.sub(r'</?think>', '', formatted_text)
|
55 |
+
|
56 |
+
return formatted_text.strip()
|
57 |
+
|
58 |
+
@spaces.GPU()
|
59 |
+
def generate_response(message, history, max_tokens, temperature, top_p):
|
60 |
+
"""Generate streaming response without threading"""
|
61 |
+
global model, tokenizer
|
62 |
+
|
63 |
+
if model is None or tokenizer is None:
|
64 |
+
yield "Model is still loading. Please wait..."
|
65 |
+
return
|
66 |
+
|
67 |
+
# Prepare conversation history
|
68 |
+
messages = []
|
69 |
+
for user_msg, assistant_msg in history:
|
70 |
+
messages.append({"role": "user", "content": user_msg})
|
71 |
+
if assistant_msg:
|
72 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
73 |
+
|
74 |
+
# Add current message
|
75 |
+
messages.append({"role": "user", "content": message})
|
76 |
+
|
77 |
+
# Apply chat template
|
78 |
+
text = tokenizer.apply_chat_template(
|
79 |
+
messages,
|
80 |
+
tokenize=False,
|
81 |
+
add_generation_prompt=True
|
82 |
+
)
|
83 |
+
|
84 |
+
# Tokenize input
|
85 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
86 |
+
|
87 |
+
try:
|
88 |
+
with torch.no_grad():
|
89 |
+
# Use transformers streaming with custom approach
|
90 |
+
generated_text = ""
|
91 |
+
current_input_ids = model_inputs["input_ids"]
|
92 |
+
current_attention_mask = model_inputs["attention_mask"]
|
93 |
+
|
94 |
+
for _ in range(max_tokens):
|
95 |
+
# Generate next token
|
96 |
+
outputs = model(
|
97 |
+
input_ids=current_input_ids,
|
98 |
+
attention_mask=current_attention_mask,
|
99 |
+
use_cache=True
|
100 |
+
)
|
101 |
+
|
102 |
+
# Get logits for the last token
|
103 |
+
logits = outputs.logits[0, -1, :]
|
104 |
+
|
105 |
+
# Apply temperature
|
106 |
+
if temperature != 1.0:
|
107 |
+
logits = logits / temperature
|
108 |
+
|
109 |
+
# Apply top-p sampling
|
110 |
+
if top_p < 1.0:
|
111 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
112 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
113 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
114 |
+
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
|
115 |
+
sorted_indices_to_remove[0] = 0
|
116 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
117 |
+
logits[indices_to_remove] = float('-inf')
|
118 |
+
|
119 |
+
# Sample next token
|
120 |
+
probs = torch.softmax(logits, dim=-1)
|
121 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
122 |
+
|
123 |
+
# Check for EOS token
|
124 |
+
if next_token.item() == tokenizer.eos_token_id:
|
125 |
+
break
|
126 |
+
|
127 |
+
# Decode the new token (preserve special tokens like <think>)
|
128 |
+
new_token_text = tokenizer.decode(next_token, skip_special_tokens=False)
|
129 |
+
generated_text += new_token_text
|
130 |
+
|
131 |
+
# Format and yield the current text
|
132 |
+
formatted_text = format_thinking_text(generated_text)
|
133 |
+
yield formatted_text
|
134 |
+
|
135 |
+
# Update inputs for next iteration
|
136 |
+
current_input_ids = torch.cat([current_input_ids, next_token.unsqueeze(0)], dim=-1)
|
137 |
+
current_attention_mask = torch.cat([current_attention_mask, torch.ones((1, 1), device=model.device)], dim=-1)
|
138 |
+
|
139 |
+
except Exception as e:
|
140 |
+
yield f"Error generating response: {str(e)}"
|
141 |
+
return
|
142 |
+
|
143 |
+
# Final yield with complete formatted text
|
144 |
+
final_text = format_thinking_text(generated_text) if generated_text else "No response generated."
|
145 |
+
yield final_text
|
146 |
+
|
147 |
+
def chat_interface(message, history, max_tokens, temperature, top_p):
|
148 |
+
"""Main chat interface with improved streaming"""
|
149 |
+
if not message.strip():
|
150 |
+
return history, ""
|
151 |
+
|
152 |
+
# Add user message to history
|
153 |
+
history.append([message, ""])
|
154 |
+
|
155 |
+
# Generate response with streaming
|
156 |
+
for partial_response in generate_response(message, history[:-1], max_tokens, temperature, top_p):
|
157 |
+
history[-1][1] = partial_response
|
158 |
+
yield history, ""
|
159 |
+
|
160 |
+
return history, ""
|
161 |
+
|
162 |
+
# Load model on startup
|
163 |
+
print("Initializing model...")
|
164 |
+
load_model()
|
165 |
+
|
166 |
+
# Custom CSS for better styling and thinking blocks
|
167 |
+
custom_css = """
|
168 |
+
/* Main chatbot styling */
|
169 |
+
.chatbot {
|
170 |
+
font-size: 14px;
|
171 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
172 |
+
}
|
173 |
+
|
174 |
+
/* Thinking block styling */
|
175 |
+
.thinking-block {
|
176 |
+
background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%);
|
177 |
+
border-left: 4px solid #4a90e2;
|
178 |
+
border-radius: 8px;
|
179 |
+
padding: 12px 16px;
|
180 |
+
margin: 12px 0;
|
181 |
+
font-family: 'Consolas', 'Monaco', 'Courier New', monospace;
|
182 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
183 |
+
position: relative;
|
184 |
+
}
|
185 |
+
|
186 |
+
.thinking-block::before {
|
187 |
+
content: "π€";
|
188 |
+
position: absolute;
|
189 |
+
top: -8px;
|
190 |
+
left: 12px;
|
191 |
+
background: white;
|
192 |
+
padding: 0 4px;
|
193 |
+
font-size: 16px;
|
194 |
+
}
|
195 |
+
|
196 |
+
/* Message styling */
|
197 |
+
.message {
|
198 |
+
padding: 10px 14px;
|
199 |
+
margin: 6px 0;
|
200 |
+
border-radius: 12px;
|
201 |
+
line-height: 1.5;
|
202 |
+
}
|
203 |
+
|
204 |
+
.user-message {
|
205 |
+
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
|
206 |
+
margin-left: 15%;
|
207 |
+
border-bottom-right-radius: 4px;
|
208 |
+
}
|
209 |
+
|
210 |
+
.assistant-message {
|
211 |
+
background: linear-gradient(135deg, #f5f5f5 0%, #eeeeee 100%);
|
212 |
+
margin-right: 15%;
|
213 |
+
border-bottom-left-radius: 4px;
|
214 |
+
}
|
215 |
+
|
216 |
+
/* Code block styling */
|
217 |
+
pre {
|
218 |
+
background-color: #f8f9fa;
|
219 |
+
border: 1px solid #e9ecef;
|
220 |
+
border-radius: 6px;
|
221 |
+
padding: 12px;
|
222 |
+
overflow-x: auto;
|
223 |
+
font-family: 'Consolas', 'Monaco', 'Courier New', monospace;
|
224 |
+
font-size: 13px;
|
225 |
+
line-height: 1.4;
|
226 |
+
}
|
227 |
+
|
228 |
+
/* Button styling */
|
229 |
+
.gradio-button {
|
230 |
+
border-radius: 8px;
|
231 |
+
font-weight: 500;
|
232 |
+
transition: all 0.2s ease;
|
233 |
+
}
|
234 |
+
|
235 |
+
.gradio-button:hover {
|
236 |
+
transform: translateY(-1px);
|
237 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.15);
|
238 |
+
}
|
239 |
+
|
240 |
+
/* Input styling */
|
241 |
+
.gradio-textbox {
|
242 |
+
border-radius: 8px;
|
243 |
+
border: 2px solid #e0e0e0;
|
244 |
+
transition: border-color 0.2s ease;
|
245 |
+
}
|
246 |
+
|
247 |
+
.gradio-textbox:focus {
|
248 |
+
border-color: #4a90e2;
|
249 |
+
box-shadow: 0 0 0 3px rgba(74, 144, 226, 0.1);
|
250 |
+
}
|
251 |
+
|
252 |
+
/* Slider styling */
|
253 |
+
.gradio-slider {
|
254 |
+
margin: 8px 0;
|
255 |
+
}
|
256 |
+
|
257 |
+
/* Examples styling */
|
258 |
+
.gradio-examples {
|
259 |
+
margin-top: 16px;
|
260 |
+
}
|
261 |
+
|
262 |
+
.gradio-examples .gradio-button {
|
263 |
+
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
|
264 |
+
border: 1px solid #dee2e6;
|
265 |
+
color: #495057;
|
266 |
+
font-size: 13px;
|
267 |
+
padding: 8px 12px;
|
268 |
+
}
|
269 |
+
|
270 |
+
.gradio-examples .gradio-button:hover {
|
271 |
+
background: linear-gradient(135deg, #e9ecef 0%, #dee2e6 100%);
|
272 |
+
color: #212529;
|
273 |
+
}
|
274 |
+
"""
|
275 |
+
|
276 |
+
# Create Gradio interface
|
277 |
+
with gr.Blocks(
|
278 |
+
title="π€ Dhanishtha-2.0-preview Chat",
|
279 |
+
theme=gr.themes.Soft(),
|
280 |
+
css=custom_css
|
281 |
+
) as demo:
|
282 |
+
gr.Markdown(
|
283 |
+
"""
|
284 |
+
# π€ Dhanishtha-2.0-preview Chat
|
285 |
+
|
286 |
+
Chat with the **HelpingAI/Dhanishtha-2.0-preview** model - The world's first LLM designed to think between responses!
|
287 |
+
|
288 |
+
### β¨ Key Features:
|
289 |
+
- π§ **Multi-step Reasoning**: Unlike other LLMs that think once, Dhanishtha can think, rethink, self-evaluate, and refine using multiple `<think>` blocks
|
290 |
+
- π **Iterative Thinking**: Watch the model's thought process unfold in real-time
|
291 |
+
- π‘ **Enhanced Problem Solving**: Better reasoning capabilities through structured thinking
|
292 |
+
|
293 |
+
**Note**: The `<think>` blocks show the model's internal reasoning process and will be displayed in a formatted way below.
|
294 |
+
"""
|
295 |
+
)
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
with gr.Column(scale=4):
|
299 |
+
chatbot = gr.Chatbot(
|
300 |
+
[],
|
301 |
+
elem_id="chatbot",
|
302 |
+
bubble_full_width=False,
|
303 |
+
height=600,
|
304 |
+
show_copy_button=True,
|
305 |
+
show_share_button=True,
|
306 |
+
avatar_images=("π€", "π€"),
|
307 |
+
render_markdown=True,
|
308 |
+
latex_delimiters=[
|
309 |
+
{"left": "$$", "right": "$$", "display": True},
|
310 |
+
{"left": "$", "right": "$", "display": False}
|
311 |
+
]
|
312 |
+
)
|
313 |
+
|
314 |
+
with gr.Row():
|
315 |
+
msg = gr.Textbox(
|
316 |
+
container=False,
|
317 |
+
placeholder="Ask me anything! I'll show you my thinking process...",
|
318 |
+
label="Message",
|
319 |
+
autofocus=True,
|
320 |
+
scale=8,
|
321 |
+
lines=1,
|
322 |
+
max_lines=5
|
323 |
+
)
|
324 |
+
send_btn = gr.Button("π Send", variant="primary", scale=1, size="lg")
|
325 |
+
|
326 |
+
with gr.Column(scale=1, min_width=300):
|
327 |
+
gr.Markdown("### βοΈ Generation Parameters")
|
328 |
+
|
329 |
+
max_tokens = gr.Slider(
|
330 |
+
minimum=50,
|
331 |
+
maximum=8192,
|
332 |
+
value=2048,
|
333 |
+
step=50,
|
334 |
+
label="π― Max Tokens",
|
335 |
+
info="Maximum number of tokens to generate"
|
336 |
+
)
|
337 |
+
|
338 |
+
temperature = gr.Slider(
|
339 |
+
minimum=0.1,
|
340 |
+
maximum=2.0,
|
341 |
+
value=0.7,
|
342 |
+
step=0.1,
|
343 |
+
label="π‘οΈ Temperature",
|
344 |
+
info="Higher = more creative, Lower = more focused"
|
345 |
+
)
|
346 |
+
|
347 |
+
top_p = gr.Slider(
|
348 |
+
minimum=0.1,
|
349 |
+
maximum=1.0,
|
350 |
+
value=0.9,
|
351 |
+
step=0.05,
|
352 |
+
label="π² Top-p",
|
353 |
+
info="Nucleus sampling threshold"
|
354 |
+
)
|
355 |
+
|
356 |
+
with gr.Row():
|
357 |
+
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary", scale=1)
|
358 |
+
stop_btn = gr.Button("βΉοΈ Stop", variant="stop", scale=1)
|
359 |
+
|
360 |
+
gr.Markdown("### π Model Info")
|
361 |
+
gr.Markdown(
|
362 |
+
"""
|
363 |
+
**Model**: HelpingAI/Dhanishtha-2.0-preview
|
364 |
+
**Type**: Reasoning LLM with thinking blocks
|
365 |
+
**Features**: Multi-step reasoning, self-evaluation
|
366 |
+
"""
|
367 |
+
)
|
368 |
+
|
369 |
+
# Event handlers
|
370 |
+
def submit_message(message, history, max_tokens, temperature, top_p):
|
371 |
+
"""Handle message submission"""
|
372 |
+
return chat_interface(message, history, max_tokens, temperature, top_p)
|
373 |
+
|
374 |
+
def clear_chat():
|
375 |
+
"""Clear the chat history"""
|
376 |
+
return [], ""
|
377 |
+
|
378 |
+
# Message submission events
|
379 |
+
msg.submit(
|
380 |
+
submit_message,
|
381 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
382 |
+
outputs=[chatbot, msg],
|
383 |
+
concurrency_limit=1,
|
384 |
+
show_progress="minimal"
|
385 |
+
)
|
386 |
+
|
387 |
+
send_btn.click(
|
388 |
+
submit_message,
|
389 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
390 |
+
outputs=[chatbot, msg],
|
391 |
+
concurrency_limit=1,
|
392 |
+
show_progress="minimal"
|
393 |
+
)
|
394 |
+
|
395 |
+
# Clear chat event
|
396 |
+
clear_btn.click(
|
397 |
+
clear_chat,
|
398 |
+
outputs=[chatbot, msg],
|
399 |
+
show_progress=False
|
400 |
+
)
|
401 |
+
|
402 |
+
# Example prompts section
|
403 |
+
with gr.Row():
|
404 |
+
gr.Examples(
|
405 |
+
examples=[
|
406 |
+
["Hello! Can you introduce yourself and show me how you think?"],
|
407 |
+
["Solve this step by step: What is 15% of 240?"],
|
408 |
+
["Explain quantum entanglement in simple terms"],
|
409 |
+
["Write a short Python function to find the factorial of a number"],
|
410 |
+
["What are the pros and cons of renewable energy?"],
|
411 |
+
["Help me understand the difference between AI and machine learning"],
|
412 |
+
["Create a haiku about artificial intelligence"],
|
413 |
+
["Explain why the sky is blue using physics principles"]
|
414 |
+
],
|
415 |
+
inputs=msg,
|
416 |
+
label="π‘ Example Prompts - Try these to see the thinking process!",
|
417 |
+
examples_per_page=4
|
418 |
+
)
|
419 |
+
|
420 |
+
# Footer with information
|
421 |
+
gr.Markdown(
|
422 |
+
"""
|
423 |
+
---
|
424 |
+
### π§ Technical Details
|
425 |
+
- **Model**: HelpingAI/Dhanishtha-2.0-preview
|
426 |
+
- **Framework**: Transformers + Gradio
|
427 |
+
- **Features**: Real-time streaming, thinking process visualization, custom sampling
|
428 |
+
- **Reasoning**: Multi-step thinking with `<think>` blocks for transparent AI reasoning
|
429 |
+
|
430 |
+
**Note**: This interface streams responses token by token and formats thinking blocks for better readability.
|
431 |
+
The model's internal reasoning process is displayed in formatted code blocks.
|
432 |
+
|
433 |
+
---
|
434 |
+
*Built with β€οΈ using Gradio and Transformers*
|
435 |
+
"""
|
436 |
+
)
|
437 |
+
|
438 |
+
if __name__ == "__main__":
|
439 |
+
demo.queue(
|
440 |
+
max_size=20,
|
441 |
+
default_concurrency_limit=1
|
442 |
+
).launch(
|
443 |
+
server_name="0.0.0.0",
|
444 |
+
server_port=7860,
|
445 |
+
share=False,
|
446 |
+
show_error=True,
|
447 |
+
quiet=False
|
448 |
+
)
|