Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,755 Bytes
e6dc671 a1c55c3 d104a8c d460687 e6dc671 d104a8c e6dc671 d104a8c e6dc671 d104a8c e6dc671 d104a8c e6dc671 d460687 8996e2d e6dc671 d104a8c e6dc671 d104a8c e6dc671 d104a8c e6dc671 d104a8c e6dc671 d104a8c e6dc671 d104a8c e6dc671 a22b65f e6dc671 a22b65f e6dc671 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import threading
import queue
import time
import spaces
import sys
from io import StringIO
# Model configuration
model_name = "HelpingAI/Dhanishtha-2.0-preview"
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the model and tokenizer"""
global model, tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
print("Model loaded successfully!")
class StreamCapture:
"""Capture streaming output from TextStreamer"""
def __init__(self):
self.text_queue = queue.Queue()
self.captured_text = ""
def write(self, text):
"""Capture written text"""
if text and text.strip():
self.captured_text += text
self.text_queue.put(text)
return len(text)
def flush(self):
"""Flush method for compatibility"""
pass
def get_text(self):
"""Get all captured text"""
return self.captured_text
def reset(self):
"""Reset the capture"""
self.captured_text = ""
while not self.text_queue.empty():
try:
self.text_queue.get_nowait()
except queue.Empty:
break
@spaces.GPU()
def generate_response(message, history, max_tokens, temperature, top_p):
"""Generate streaming response"""
global model, tokenizer
if model is None or tokenizer is None:
yield "Model is still loading. Please wait..."
return
# Prepare conversation history
messages = []
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Apply chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Create stream capture
stream_capture = StreamCapture()
# Create TextStreamer with our capture
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Temporarily redirect the streamer's output
original_stdout = sys.stdout
# Generation parameters
generation_kwargs = {
**model_inputs,
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
}
# Start generation in a separate thread
def generate():
try:
# Redirect stdout to capture streamer output
sys.stdout = stream_capture
with torch.no_grad():
model.generate(**generation_kwargs)
except Exception as e:
stream_capture.text_queue.put(f"Error: {str(e)}")
finally:
# Restore stdout
sys.stdout = original_stdout
stream_capture.text_queue.put(None) # Signal end
thread = threading.Thread(target=generate)
thread.start()
# Stream the results
generated_text = ""
while True:
try:
new_text = stream_capture.text_queue.get(timeout=30)
if new_text is None:
break
generated_text += new_text
yield generated_text
except queue.Empty:
break
thread.join(timeout=1)
# Final yield with complete text
if generated_text:
yield generated_text
else:
yield "No response generated."
def chat_interface(message, history, max_tokens, temperature, top_p):
"""Main chat interface"""
if not message.strip():
return history, ""
# Add user message to history
history.append([message, ""])
# Generate response
for partial_response in generate_response(message, history[:-1], max_tokens, temperature, top_p):
history[-1][1] = partial_response
yield history, ""
return history, ""
# Load model on startup
print("Initializing model...")
load_model()
# Create Gradio interface
with gr.Blocks(title="Dhanishtha-2.0-preview Chat", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🤖 Dhanishtha-2.0-preview Chat
Chat with the **HelpingAI/Dhanishtha-2.0-preview** model!
Dhanishtha 2.0 is the world's first LLM designed to think between the responses. Unlike other Reasoning LLMs, which think just once.
Dhanishtha can think, rethink, self-evaluate, and refine in between responses using multiple <think> blocks.
"""
)
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=500,
show_copy_button=True
)
with gr.Row():
msg = gr.Textbox(
container=False,
placeholder="Type your message here...",
label="Message",
autofocus=True,
scale=7
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Column(scale=1):
gr.Markdown("### ⚙️ Parameters")
max_tokens = gr.Slider(
minimum=1,
maximum=40960,
value=2048,
step=1,
label="Max Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Controls randomness in generation"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p",
info="Controls diversity of generation"
)
clear_btn = gr.Button("🗑️ Clear Chat", variant="secondary")
# Event handlers
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1
)
send_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1
)
clear_btn.click(
lambda: ([], ""),
outputs=[chatbot, msg]
)
# Example prompts
gr.Examples(
examples=[
["Hello! Who are you?"],
["Explain quantum computing in simple terms"],
["Write a short story about a robot learning to paint"],
["What are the benefits of renewable energy?"],
["Help me write a Python function to sort a list"]
],
inputs=msg,
label="💡 Example Prompts"
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |