Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
4 |
+
import threading
|
5 |
+
import queue
|
6 |
+
import time
|
7 |
+
|
8 |
+
# Model configuration
|
9 |
+
model_name = "HelpingAI/Dhanishtha-2.0-preview"
|
10 |
+
|
11 |
+
# Global variables for model and tokenizer
|
12 |
+
model = None
|
13 |
+
tokenizer = None
|
14 |
+
|
15 |
+
def load_model():
|
16 |
+
"""Load the model and tokenizer"""
|
17 |
+
global model, tokenizer
|
18 |
+
|
19 |
+
print("Loading tokenizer...")
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
|
22 |
+
print("Loading model...")
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
model_name,
|
25 |
+
torch_dtype="auto",
|
26 |
+
device_map="auto",
|
27 |
+
trust_remote_code=True
|
28 |
+
)
|
29 |
+
|
30 |
+
print("Model loaded successfully!")
|
31 |
+
|
32 |
+
class GradioTextStreamer(TextStreamer):
|
33 |
+
"""Custom TextStreamer for Gradio integration"""
|
34 |
+
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
|
35 |
+
super().__init__(tokenizer, skip_prompt, skip_special_tokens)
|
36 |
+
self.text_queue = queue.Queue()
|
37 |
+
self.generated_text = ""
|
38 |
+
|
39 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
40 |
+
"""Called when text is finalized"""
|
41 |
+
self.generated_text += text
|
42 |
+
self.text_queue.put(text)
|
43 |
+
if stream_end:
|
44 |
+
self.text_queue.put(None)
|
45 |
+
|
46 |
+
def get_generated_text(self):
|
47 |
+
"""Get all generated text so far"""
|
48 |
+
return self.generated_text
|
49 |
+
|
50 |
+
def reset(self):
|
51 |
+
"""Reset the streamer"""
|
52 |
+
self.generated_text = ""
|
53 |
+
# Clear the queue
|
54 |
+
while not self.text_queue.empty():
|
55 |
+
try:
|
56 |
+
self.text_queue.get_nowait()
|
57 |
+
except queue.Empty:
|
58 |
+
break
|
59 |
+
|
60 |
+
def generate_response(message, history, max_tokens, temperature, top_p):
|
61 |
+
"""Generate streaming response"""
|
62 |
+
global model, tokenizer
|
63 |
+
|
64 |
+
if model is None or tokenizer is None:
|
65 |
+
yield "Model is still loading. Please wait..."
|
66 |
+
return
|
67 |
+
|
68 |
+
# Prepare conversation history
|
69 |
+
messages = []
|
70 |
+
for user_msg, assistant_msg in history:
|
71 |
+
messages.append({"role": "user", "content": user_msg})
|
72 |
+
if assistant_msg:
|
73 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
74 |
+
|
75 |
+
# Add current message
|
76 |
+
messages.append({"role": "user", "content": message})
|
77 |
+
|
78 |
+
# Apply chat template
|
79 |
+
text = tokenizer.apply_chat_template(
|
80 |
+
messages,
|
81 |
+
tokenize=False,
|
82 |
+
add_generation_prompt=True
|
83 |
+
)
|
84 |
+
|
85 |
+
# Tokenize input
|
86 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
87 |
+
|
88 |
+
# Create and setup streamer
|
89 |
+
streamer = GradioTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
90 |
+
streamer.reset()
|
91 |
+
|
92 |
+
# Start generation in a separate thread
|
93 |
+
generation_kwargs = {
|
94 |
+
**model_inputs,
|
95 |
+
"max_new_tokens": max_tokens,
|
96 |
+
"temperature": temperature,
|
97 |
+
"top_p": top_p,
|
98 |
+
"do_sample": True,
|
99 |
+
"pad_token_id": tokenizer.eos_token_id,
|
100 |
+
"streamer": streamer,
|
101 |
+
"return_dict_in_generate": True
|
102 |
+
}
|
103 |
+
|
104 |
+
# Run generation in thread
|
105 |
+
def generate():
|
106 |
+
try:
|
107 |
+
with torch.no_grad():
|
108 |
+
model.generate(**generation_kwargs)
|
109 |
+
except Exception as e:
|
110 |
+
streamer.text_queue.put(f"Error: {str(e)}")
|
111 |
+
streamer.text_queue.put(None)
|
112 |
+
|
113 |
+
thread = threading.Thread(target=generate)
|
114 |
+
thread.start()
|
115 |
+
|
116 |
+
# Stream the results
|
117 |
+
generated_text = ""
|
118 |
+
while True:
|
119 |
+
try:
|
120 |
+
new_text = streamer.text_queue.get(timeout=30)
|
121 |
+
if new_text is None:
|
122 |
+
break
|
123 |
+
generated_text += new_text
|
124 |
+
yield generated_text
|
125 |
+
except queue.Empty:
|
126 |
+
break
|
127 |
+
|
128 |
+
thread.join(timeout=1)
|
129 |
+
|
130 |
+
# Final yield with complete text
|
131 |
+
if generated_text:
|
132 |
+
yield generated_text
|
133 |
+
else:
|
134 |
+
yield "No response generated."
|
135 |
+
|
136 |
+
def chat_interface(message, history, max_tokens, temperature, top_p):
|
137 |
+
"""Main chat interface"""
|
138 |
+
if not message.strip():
|
139 |
+
return history, ""
|
140 |
+
|
141 |
+
# Add user message to history
|
142 |
+
history.append([message, ""])
|
143 |
+
|
144 |
+
# Generate response
|
145 |
+
for partial_response in generate_response(message, history[:-1], max_tokens, temperature, top_p):
|
146 |
+
history[-1][1] = partial_response
|
147 |
+
yield history, ""
|
148 |
+
|
149 |
+
return history, ""
|
150 |
+
|
151 |
+
# Load model on startup
|
152 |
+
print("Initializing model...")
|
153 |
+
load_model()
|
154 |
+
|
155 |
+
# Create Gradio interface
|
156 |
+
with gr.Blocks(title="Dhanishtha-2.0-preview Chat", theme=gr.themes.Soft()) as demo:
|
157 |
+
gr.Markdown(
|
158 |
+
"""
|
159 |
+
# 🤖 Dhanishtha-2.0-preview Chat
|
160 |
+
|
161 |
+
Chat with the **HelpingAI/Dhanishtha-2.0-preview** model!
|
162 |
+
"""
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Column(scale=4):
|
167 |
+
chatbot = gr.Chatbot(
|
168 |
+
[],
|
169 |
+
elem_id="chatbot",
|
170 |
+
bubble_full_width=False,
|
171 |
+
height=500,
|
172 |
+
show_copy_button=True
|
173 |
+
)
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
msg = gr.Textbox(
|
177 |
+
container=False,
|
178 |
+
placeholder="Type your message here...",
|
179 |
+
label="Message",
|
180 |
+
autofocus=True,
|
181 |
+
scale=7
|
182 |
+
)
|
183 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
184 |
+
|
185 |
+
with gr.Column(scale=1):
|
186 |
+
gr.Markdown("### ⚙️ Parameters")
|
187 |
+
|
188 |
+
max_tokens = gr.Slider(
|
189 |
+
minimum=1,
|
190 |
+
maximum=4096,
|
191 |
+
value=2048,
|
192 |
+
step=1,
|
193 |
+
label="Max Tokens",
|
194 |
+
info="Maximum number of tokens to generate"
|
195 |
+
)
|
196 |
+
|
197 |
+
temperature = gr.Slider(
|
198 |
+
minimum=0.1,
|
199 |
+
maximum=2.0,
|
200 |
+
value=0.7,
|
201 |
+
step=0.1,
|
202 |
+
label="Temperature",
|
203 |
+
info="Controls randomness in generation"
|
204 |
+
)
|
205 |
+
|
206 |
+
top_p = gr.Slider(
|
207 |
+
minimum=0.1,
|
208 |
+
maximum=1.0,
|
209 |
+
value=0.9,
|
210 |
+
step=0.05,
|
211 |
+
label="Top-p",
|
212 |
+
info="Controls diversity of generation"
|
213 |
+
)
|
214 |
+
|
215 |
+
clear_btn = gr.Button("🗑️ Clear Chat", variant="secondary")
|
216 |
+
|
217 |
+
# Event handlers
|
218 |
+
msg.submit(
|
219 |
+
chat_interface,
|
220 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
221 |
+
outputs=[chatbot, msg],
|
222 |
+
concurrency_limit=1
|
223 |
+
)
|
224 |
+
|
225 |
+
send_btn.click(
|
226 |
+
chat_interface,
|
227 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
228 |
+
outputs=[chatbot, msg],
|
229 |
+
concurrency_limit=1
|
230 |
+
)
|
231 |
+
|
232 |
+
clear_btn.click(
|
233 |
+
lambda: ([], ""),
|
234 |
+
outputs=[chatbot, msg]
|
235 |
+
)
|
236 |
+
|
237 |
+
# Example prompts
|
238 |
+
gr.Examples(
|
239 |
+
examples=[
|
240 |
+
["Hello! Who are you?"],
|
241 |
+
["Explain quantum computing in simple terms"],
|
242 |
+
["Write a short story about a robot learning to paint"],
|
243 |
+
["What are the benefits of renewable energy?"],
|
244 |
+
["Help me write a Python function to sort a list"]
|
245 |
+
],
|
246 |
+
inputs=msg,
|
247 |
+
label="💡 Example Prompts"
|
248 |
+
)
|
249 |
+
|
250 |
+
if __name__ == "__main__":
|
251 |
+
demo.queue(max_size=20).launch()
|