File size: 14,424 Bytes
ac24bf9
 
8e5bed7
ac24bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5bed7
ac24bf9
 
 
8e5bed7
ac24bf9
 
a338ea6
ac24bf9
 
 
 
a338ea6
 
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
 
 
 
 
 
 
 
 
 
8e5bed7
ac24bf9
8e5bed7
ac24bf9
 
 
8e5bed7
ac24bf9
 
 
 
 
 
8e5bed7
ac24bf9
 
8e5bed7
ac24bf9
 
 
 
 
 
8e5bed7
ac24bf9
 
8e5bed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
8e5bed7
 
ac24bf9
 
8e5bed7
ac24bf9
 
 
8e5bed7
 
ac24bf9
 
8e5bed7
 
ac24bf9
 
 
 
 
 
 
 
8e5bed7
ac24bf9
8e5bed7
7cbe8ed
8e5bed7
 
7cbe8ed
 
8e5bed7
 
 
 
 
 
 
 
 
 
ac24bf9
 
8e5bed7
 
 
ac24bf9
 
8e5bed7
 
ac24bf9
 
8e5bed7
 
 
 
7cbe8ed
8e5bed7
7cbe8ed
 
8e5bed7
 
 
 
7cbe8ed
 
8e5bed7
 
 
 
7cbe8ed
 
8e5bed7
 
 
 
 
 
 
 
 
 
ac24bf9
 
 
 
8e5bed7
 
 
ac24bf9
 
8e5bed7
 
 
ac24bf9
 
8e5bed7
 
 
 
 
7cbe8ed
 
8e5bed7
 
 
ac24bf9
 
 
 
8e5bed7
ac24bf9
 
 
 
8e5bed7
ac24bf9
 
 
8e5bed7
 
 
ac24bf9
8e5bed7
ac24bf9
 
 
8e5bed7
 
ac24bf9
 
 
8e5bed7
ac24bf9
8e5bed7
 
 
ac24bf9
8e5bed7
 
 
ac24bf9
8e5bed7
ac24bf9
8e5bed7
 
 
 
ac24bf9
8e5bed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
8e5bed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
 
 
 
 
 
 
 
5e3eb6a
ac24bf9
 
 
 
 
 
 
5e3eb6a
ac24bf9
 
 
 
 
 
 
 
 
 
 
 
 
8e5bed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac24bf9
 
 
8e5bed7
 
ac24bf9
 
 
 
 
8e5bed7
ac24bf9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
import re

# Model configuration
model_name = "HelpingAI/Dhanishtha-2.0-preview"

# Global variables for model and tokenizer
model = None
tokenizer = None

def load_model():
    """Load the model and tokenizer"""
    global model, tokenizer

    print("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    # Ensure pad token is set
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    print("Loading model...")
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype="auto",
        device_map="auto",
        trust_remote_code=True
    )

    print("Model loaded successfully!")

def format_thinking_text(text):
    """Format text to properly display <think> tags in Gradio with blue border styling like HelpingAI"""
    if not text:
        return text

    # More sophisticated formatting for thinking blocks with blue styling
    formatted_text = text

    # Handle thinking blocks with proper HTML-like styling for Gradio
    thinking_pattern = r'<think>(.*?)</think>'

    def replace_thinking_block(match):
        thinking_content = match.group(1).strip()
        # Use HTML div with inline CSS for blue border styling like HelpingAI
        return f'''

<div style="border-left: 4px solid #4a90e2; background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(74, 144, 226, 0.15); border: 1px solid rgba(74, 144, 226, 0.2);">
<div style="color: #4a90e2; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">🧠</span> Think
</div>
<div style="color: #2c3e50; line-height: 1.6; font-size: 14px;">
{thinking_content}
</div>
</div>

'''

    formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL)

    # Clean up any remaining raw tags that might not have been caught
    formatted_text = re.sub(r'</?think>', '', formatted_text)

    return formatted_text.strip()

@spaces.GPU()
def generate_response(message, history, max_tokens, temperature, top_p):
    """Generate streaming response without threading"""
    global model, tokenizer

    if model is None or tokenizer is None:
        yield "Model is still loading. Please wait..."
        return

    # Prepare conversation history
    messages = []
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})

    # Add current message
    messages.append({"role": "user", "content": message})

    # Apply chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    try:
        with torch.no_grad():
            # Use transformers streaming with custom approach
            generated_text = ""
            current_input_ids = model_inputs["input_ids"]
            current_attention_mask = model_inputs["attention_mask"]

            for _ in range(max_tokens):
                # Generate next token
                outputs = model(
                    input_ids=current_input_ids,
                    attention_mask=current_attention_mask,
                    use_cache=True
                )

                # Get logits for the last token
                logits = outputs.logits[0, -1, :]

                # Apply temperature
                if temperature != 1.0:
                    logits = logits / temperature

                # Apply top-p sampling
                if top_p < 1.0:
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                    cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                    sorted_indices_to_remove = cumulative_probs > top_p
                    sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
                    sorted_indices_to_remove[0] = 0
                    indices_to_remove = sorted_indices[sorted_indices_to_remove]
                    logits[indices_to_remove] = float('-inf')

                # Sample next token
                probs = torch.softmax(logits, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1)

                # Check for EOS token
                if next_token.item() == tokenizer.eos_token_id:
                    break

                # Decode the new token (preserve special tokens like <think>)
                new_token_text = tokenizer.decode(next_token, skip_special_tokens=False)
                generated_text += new_token_text

                # Format and yield the current text
                formatted_text = format_thinking_text(generated_text)
                yield formatted_text

                # Update inputs for next iteration
                current_input_ids = torch.cat([current_input_ids, next_token.unsqueeze(0)], dim=-1)
                current_attention_mask = torch.cat([current_attention_mask, torch.ones((1, 1), device=model.device)], dim=-1)

    except Exception as e:
        yield f"Error generating response: {str(e)}"
        return

    # Final yield with complete formatted text
    final_text = format_thinking_text(generated_text) if generated_text else "No response generated."
    yield final_text

def chat_interface(message, history, max_tokens, temperature, top_p):
    """Main chat interface with improved streaming"""
    if not message.strip():
        return history, ""

    # Add user message to history
    history.append([message, ""])

    # Generate response with streaming
    for partial_response in generate_response(message, history[:-1], max_tokens, temperature, top_p):
        history[-1][1] = partial_response
        yield history, ""

    return history, ""

# Load model on startup
print("Initializing model...")
load_model()

# Custom CSS for better styling and thinking blocks
custom_css = """
/* Main chatbot styling */
.chatbot {
    font-size: 14px;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}

/* Enhanced thinking block styling - now handled via inline HTML */
.thinking-block {
    background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%);
    border-left: 4px solid #4a90e2;
    border-radius: 8px;
    padding: 12px 16px;
    margin: 12px 0;
    font-family: 'Segoe UI', sans-serif;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    position: relative;
}

/* Support for HTML content in chatbot */
.chatbot .message {
    overflow: visible;
}

.chatbot .message div {
    max-width: none;
}

/* Message styling */
.message {
    padding: 10px 14px;
    margin: 6px 0;
    border-radius: 12px;
    line-height: 1.5;
}

.user-message {
    background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
    margin-left: 15%;
    border-bottom-right-radius: 4px;
}

.assistant-message {
    background: linear-gradient(135deg, #f5f5f5 0%, #eeeeee 100%);
    margin-right: 15%;
    border-bottom-left-radius: 4px;
}

/* Code block styling */
pre {
    background-color: #f8f9fa;
    border: 1px solid #e9ecef;
    border-radius: 6px;
    padding: 12px;
    overflow-x: auto;
    font-family: 'Consolas', 'Monaco', 'Courier New', monospace;
    font-size: 13px;
    line-height: 1.4;
}

/* Button styling */
.gradio-button {
    border-radius: 8px;
    font-weight: 500;
    transition: all 0.2s ease;
}

.gradio-button:hover {
    transform: translateY(-1px);
    box-shadow: 0 4px 8px rgba(0,0,0,0.15);
}

/* Input styling */
.gradio-textbox {
    border-radius: 8px;
    border: 2px solid #e0e0e0;
    transition: border-color 0.2s ease;
}

.gradio-textbox:focus {
    border-color: #4a90e2;
    box-shadow: 0 0 0 3px rgba(74, 144, 226, 0.1);
}

/* Slider styling */
.gradio-slider {
    margin: 8px 0;
}

/* Examples styling */
.gradio-examples {
    margin-top: 16px;
}

.gradio-examples .gradio-button {
    background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
    border: 1px solid #dee2e6;
    color: #495057;
    font-size: 13px;
    padding: 8px 12px;
}

.gradio-examples .gradio-button:hover {
    background: linear-gradient(135deg, #e9ecef 0%, #dee2e6 100%);
    color: #212529;
}
"""

# Create Gradio interface
with gr.Blocks(
    title="πŸ€– Dhanishtha-2.0-preview Chat",
    theme=gr.themes.Soft(),
    css=custom_css
) as demo:
    gr.Markdown(
        """
        # πŸ€– Dhanishtha-2.0-preview Chat

        Chat with the **HelpingAI/Dhanishtha-2.0-preview** model - The world's first LLM designed to think between responses!

        ### ✨ Key Features:
        - 🧠 **Multi-step Reasoning**: Unlike other LLMs that think once, Dhanishtha can think, rethink, self-evaluate, and refine using multiple `<think>` blocks
        - πŸ”„ **Iterative Thinking**: Watch the model's thought process unfold in real-time
        - πŸ’‘ **Enhanced Problem Solving**: Better reasoning capabilities through structured thinking

        **Note**: The `<think>` blocks show the model's internal reasoning process and will be displayed in a formatted way below.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(
                [],
                elem_id="chatbot",
                bubble_full_width=False,
                height=600,
                show_copy_button=True,
                show_share_button=True,
                avatar_images=("πŸ‘€", "πŸ€–"),
                render_markdown=True,
                sanitize_html=False,  # Allow HTML for thinking blocks
                latex_delimiters=[
                    {"left": "$$", "right": "$$", "display": True},
                    {"left": "$", "right": "$", "display": False}
                ]
            )

            with gr.Row():
                msg = gr.Textbox(
                    container=False,
                    placeholder="Ask me anything! I'll show you my thinking process...",
                    label="Message",
                    autofocus=True,
                    scale=8,
                    lines=1,
                    max_lines=5
                )
                send_btn = gr.Button("πŸš€ Send", variant="primary", scale=1, size="lg")

        with gr.Column(scale=1, min_width=300):
            gr.Markdown("### βš™οΈ Generation Parameters")

            max_tokens = gr.Slider(
                minimum=50,
                maximum=8192,
                value=2048,
                step=50,
                label="🎯 Max Tokens",
                info="Maximum number of tokens to generate"
            )

            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=0.7,
                step=0.1,
                label="🌑️ Temperature",
                info="Higher = more creative, Lower = more focused"
            )

            top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.9,
                step=0.05,
                label="🎲 Top-p",
                info="Nucleus sampling threshold"
            )

            with gr.Row():
                clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary", scale=1)
                stop_btn = gr.Button("⏹️ Stop", variant="stop", scale=1)

            gr.Markdown("### πŸ“Š Model Info")
            gr.Markdown(
                """
                **Model**: HelpingAI/Dhanishtha-2.0-preview
                **Type**: Reasoning LLM with thinking blocks
                **Features**: Multi-step reasoning, self-evaluation
                """
            )
    
    # Event handlers
    def clear_chat():
        """Clear the chat history"""
        return [], ""

    # Message submission events
    msg.submit(
        chat_interface,
        inputs=[msg, chatbot, max_tokens, temperature, top_p],
        outputs=[chatbot, msg],
        concurrency_limit=1,
        show_progress="minimal"
    )

    send_btn.click(
        chat_interface,
        inputs=[msg, chatbot, max_tokens, temperature, top_p],
        outputs=[chatbot, msg],
        concurrency_limit=1,
        show_progress="minimal"
    )

    # Clear chat event
    clear_btn.click(
        clear_chat,
        outputs=[chatbot, msg],
        show_progress=False
    )

    # Example prompts section
    with gr.Row():
        gr.Examples(
            examples=[
                ["Hello! Can you introduce yourself and show me how you think?"],
                ["Solve this step by step: What is 15% of 240?"],
                ["Explain quantum entanglement in simple terms"],
                ["Write a short Python function to find the factorial of a number"],
                ["What are the pros and cons of renewable energy?"],
                ["Help me understand the difference between AI and machine learning"],
                ["Create a haiku about artificial intelligence"],
                ["Explain why the sky is blue using physics principles"]
            ],
            inputs=msg,
            label="πŸ’‘ Example Prompts - Try these to see the thinking process!",
            examples_per_page=4
        )

    # Footer with information
    gr.Markdown(
        """
        ---
        ### πŸ”§ Technical Details
        - **Model**: HelpingAI/Dhanishtha-2.0-preview
        - **Framework**: Transformers + Gradio
        - **Features**: Real-time streaming, thinking process visualization, custom sampling
        - **Reasoning**: Multi-step thinking with `<think>` blocks for transparent AI reasoning

        **Note**: This interface streams responses token by token and formats thinking blocks for better readability.
        The model's internal reasoning process is displayed in formatted code blocks.

        ---
        *Built with ❀️ using Gradio and Transformers*
        """
    )

if __name__ == "__main__":
    demo.queue(
        max_size=20,
        default_concurrency_limit=1
    ).launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        quiet=False
    )