Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,180 Bytes
ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 a338ea6 ac24bf9 a338ea6 7cbe8ed a338ea6 ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 04e28a8 ac24bf9 04e28a8 ac24bf9 04e28a8 ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed a338ea6 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed 04e28a8 7cbe8ed 04e28a8 7cbe8ed ac24bf9 7cbe8ed 04e28a8 7cbe8ed 04e28a8 7cbe8ed 04e28a8 7cbe8ed 04e28a8 7cbe8ed ac24bf9 7cbe8ed 04e28a8 7cbe8ed ac24bf9 7cbe8ed 04e28a8 ac24bf9 7cbe8ed 04e28a8 7cbe8ed ac24bf9 7cbe8ed 04e28a8 7cbe8ed ac24bf9 5e3eb6a ac24bf9 5e3eb6a ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 7cbe8ed ac24bf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import threading
import queue
import time
import spaces
import sys
from io import StringIO
import re
# Model configuration
model_name = "HelpingAI/Dhanishtha-2.0-preview"
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the model and tokenizer"""
global model, tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Ensure pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
print("Model loaded successfully!")
class StreamCapture:
"""Capture streaming output from TextStreamer"""
def __init__(self):
self.text_queue = queue.Queue()
self.captured_text = ""
def write(self, text):
"""Capture written text"""
if text and text.strip():
self.captured_text += text
self.text_queue.put(text)
return len(text)
def flush(self):
"""Flush method for compatibility"""
pass
def get_text(self):
"""Get all captured text"""
return self.captured_text
def reset(self):
"""Reset the capture"""
self.captured_text = ""
while not self.text_queue.empty():
try:
self.text_queue.get_nowait()
except queue.Empty:
break
def format_thinking_text(text):
"""Format text to properly display <think> and <ser> tags in Gradio with styled borders"""
if not text:
return text
# More sophisticated formatting for thinking and SER blocks
formatted_text = text
# Handle thinking blocks with proper HTML-like styling for Gradio
thinking_pattern = r'<think>(.*?)</think>'
def replace_thinking_block(match):
thinking_content = match.group(1).strip()
# Use HTML div with inline CSS for blue border styling like HelpingAI
return f'''
<div style="border-left: 4px solid #4a90e2; background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(74, 144, 226, 0.15); border: 1px solid rgba(74, 144, 226, 0.2);">
<div style="color: #4a90e2; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">π§ </span> Think
</div>
<div style="color: #2c3e50; line-height: 1.6; font-size: 14px;">
{thinking_content}
</div>
</div>
'''
# Handle SER blocks with purple/violet styling and structured formatting
ser_pattern = r'<ser>(.*?)</ser>'
def replace_ser_block(match):
ser_content = match.group(1).strip()
# Parse structured SER content if it follows the pattern
ser_lines = ser_content.split('\n')
formatted_content = []
for line in ser_lines:
line = line.strip()
if not line:
continue
# Check if line has the "Key ==> Value" pattern
if ' ==> ' in line:
parts = line.split(' ==> ', 1)
if len(parts) == 2:
key = parts[0].strip()
value = parts[1].strip()
formatted_content.append(f'<div style="margin: 8px 0;"><strong style="color: #8e44ad;">{key}:</strong> <span style="color: #2c3e50;">{value}</span></div>')
else:
formatted_content.append(f'<div style="margin: 4px 0; color: #2c3e50;">{line}</div>')
else:
formatted_content.append(f'<div style="margin: 4px 0; color: #2c3e50;">{line}</div>')
if not formatted_content:
formatted_content = [f'<div style="color: #2c3e50; line-height: 1.6;">{ser_content}</div>']
content_html = ''.join(formatted_content)
# Use HTML div with inline CSS for purple border styling for SER
return f'''
<div style="border-left: 4px solid #8e44ad; background: linear-gradient(135deg, #f8f4ff 0%, #ede7f6 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(142, 68, 173, 0.15); border: 1px solid rgba(142, 68, 173, 0.2);">
<div style="color: #8e44ad; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">π</span> SER (Structured Emotional Reasoning)
</div>
<div style="line-height: 1.6; font-size: 14px;">
{content_html}
</div>
</div>
'''
formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL)
formatted_text = re.sub(ser_pattern, replace_ser_block, formatted_text, flags=re.DOTALL)
# Clean up any remaining raw tags that might not have been caught
formatted_text = re.sub(r'</?think>', '', formatted_text)
formatted_text = re.sub(r'</?ser>', '', formatted_text)
return formatted_text.strip()
@spaces.GPU()
def generate_response(message, history, max_tokens, temperature, top_p):
"""Generate streaming response with improved TextStreamer"""
global model, tokenizer
if model is None or tokenizer is None:
yield "Model is still loading. Please wait..."
return
# Prepare conversation history
messages = []
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Apply chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Create stream capture
stream_capture = StreamCapture()
# Create TextStreamer with our capture - don't skip special tokens to preserve <think> and <ser>
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
# Temporarily redirect the streamer's output
original_stdout = sys.stdout
# Generation parameters
generation_kwargs = {
**model_inputs,
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
}
# Start generation in a separate thread
def generate():
try:
# Redirect stdout to capture streamer output
sys.stdout = stream_capture
with torch.no_grad():
model.generate(**generation_kwargs)
except Exception as e:
stream_capture.text_queue.put(f"Error: {str(e)}")
finally:
# Restore stdout
sys.stdout = original_stdout
stream_capture.text_queue.put(None) # Signal end
thread = threading.Thread(target=generate)
thread.start()
# Stream the results with formatting
generated_text = ""
while True:
try:
new_text = stream_capture.text_queue.get(timeout=30)
if new_text is None:
break
generated_text += new_text
# Format and yield the current text with <think> and <ser> blocks
formatted_text = format_thinking_text(generated_text)
yield formatted_text
except queue.Empty:
break
thread.join(timeout=1)
# Final yield with complete formatted text
if generated_text:
final_text = format_thinking_text(generated_text)
yield final_text
else:
yield "No response generated."
def chat_interface(message, history, max_tokens, temperature, top_p):
"""Main chat interface with improved streaming for messages format"""
if not message.strip():
return history, ""
# Add user message to history (messages format)
history.append({"role": "user", "content": message})
# Generate response with streaming
# Convert messages format to tuples for generate_response compatibility
history_tuples = []
for i in range(0, len(history) - 1, 2): # Process pairs
user_msg = history[i] if i < len(history) else None
assistant_msg = history[i + 1] if i + 1 < len(history) else None
if user_msg and user_msg.get("role") == "user":
user_content = user_msg.get("content", "")
assistant_content = assistant_msg.get("content", "") if assistant_msg and assistant_msg.get("role") == "assistant" else ""
history_tuples.append([user_content, assistant_content])
# Add assistant message placeholder
history.append({"role": "assistant", "content": ""})
# Generate response with streaming
for partial_response in generate_response(message, history_tuples, max_tokens, temperature, top_p):
history[-1]["content"] = partial_response
yield history, ""
return history, ""
# Load model on startup
print("Initializing model...")
load_model()
# Custom CSS for modern, professional styling
custom_css = """
/* Import Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=JetBrains+Mono:wght@400;500&display=swap');
/* Global styling */
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
}
/* Main container styling */
.main {
background: rgba(255, 255, 255, 0.95);
backdrop-filter: blur(20px);
border-radius: 24px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
margin: 20px;
padding: 32px;
border: 1px solid rgba(255, 255, 255, 0.2);
}
/* Header styling */
.gradio-markdown h1 {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-weight: 700;
font-size: 3rem;
text-align: center;
margin-bottom: 1rem;
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.gradio-markdown h3 {
color: #4a5568;
font-weight: 600;
margin-top: 1.5rem;
margin-bottom: 0.5rem;
}
/* Chatbot styling */
.chatbot {
font-size: 15px;
font-family: 'Inter', sans-serif;
background: #ffffff;
border-radius: 20px;
border: 1px solid #e2e8f0;
box-shadow: 0 8px 32px rgba(0,0,0,0.08);
overflow: hidden;
}
.chatbot .message {
padding: 16px 20px;
margin: 8px 12px;
border-radius: 16px;
line-height: 1.6;
box-shadow: 0 2px 8px rgba(0,0,0,0.06);
transition: all 0.2s ease;
}
.chatbot .message:hover {
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
/* User message styling */
.chatbot .message.user {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
margin-left: 15%;
border-bottom-right-radius: 6px;
box-shadow: 0 4px 16px rgba(102, 126, 234, 0.3);
}
/* Assistant message styling */
.chatbot .message.bot {
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
color: #2d3748;
margin-right: 15%;
border-bottom-left-radius: 6px;
border: 1px solid #e2e8f0;
}
/* Enhanced thinking and SER block styling */
.thinking-block, .ser-block {
border-radius: 12px;
padding: 16px 20px;
margin: 16px 0;
font-family: 'Inter', sans-serif;
box-shadow: 0 4px 12px rgba(0,0,0,0.08);
position: relative;
overflow: hidden;
}
.thinking-block::before, .ser-block::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 3px;
background: linear-gradient(90deg, #4a90e2, #357abd);
}
/* Input styling */
.gradio-textbox {
border-radius: 16px;
border: 2px solid #e2e8f0;
transition: all 0.3s ease;
font-family: 'Inter', sans-serif;
padding: 16px 20px;
font-size: 15px;
background: #ffffff;
box-shadow: 0 2px 8px rgba(0,0,0,0.04);
}
.gradio-textbox:focus {
border-color: #667eea;
box-shadow: 0 0 0 4px rgba(102, 126, 234, 0.1);
outline: none;
}
/* Button styling */
.gradio-button {
border-radius: 14px;
font-weight: 600;
font-family: 'Inter', sans-serif;
transition: all 0.3s ease;
padding: 12px 24px;
font-size: 14px;
letter-spacing: 0.5px;
border: none;
cursor: pointer;
position: relative;
overflow: hidden;
}
.gradio-button.primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
box-shadow: 0 4px 16px rgba(102, 126, 234, 0.3);
}
.gradio-button.primary:hover {
transform: translateY(-2px);
box-shadow: 0 8px 24px rgba(102, 126, 234, 0.4);
}
.gradio-button.secondary {
background: linear-gradient(135deg, #f7fafc 0%, #edf2f7 100%);
color: #4a5568;
border: 1px solid #e2e8f0;
}
.gradio-button.secondary:hover {
background: linear-gradient(135deg, #edf2f7 0%, #e2e8f0 100%);
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
/* Slider styling */
.gradio-slider {
margin: 12px 0;
}
.gradio-slider input[type="range"] {
-webkit-appearance: none;
height: 6px;
border-radius: 3px;
background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e0 100%);
outline: none;
}
.gradio-slider input[type="range"]::-webkit-slider-thumb {
-webkit-appearance: none;
appearance: none;
width: 20px;
height: 20px;
border-radius: 50%;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
cursor: pointer;
box-shadow: 0 2px 8px rgba(102, 126, 234, 0.3);
transition: all 0.2s ease;
}
.gradio-slider input[type="range"]::-webkit-slider-thumb:hover {
transform: scale(1.1);
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4);
}
/* Examples styling */
.gradio-examples {
margin-top: 24px;
background: rgba(255, 255, 255, 0.7);
backdrop-filter: blur(10px);
border-radius: 16px;
padding: 20px;
border: 1px solid rgba(255, 255, 255, 0.2);
}
.gradio-examples .gradio-button {
background: rgba(255, 255, 255, 0.9);
border: 1px solid #e2e8f0;
color: #4a5568;
font-size: 13px;
padding: 12px 16px;
margin: 4px;
border-radius: 12px;
transition: all 0.2s ease;
backdrop-filter: blur(10px);
}
.gradio-examples .gradio-button:hover {
background: rgba(255, 255, 255, 1);
color: #2d3748;
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
/* Code block styling */
pre {
background: linear-gradient(135deg, #2d3748 0%, #4a5568 100%);
color: #e2e8f0;
border-radius: 12px;
padding: 20px;
overflow-x: auto;
font-family: 'JetBrains Mono', 'Consolas', 'Monaco', monospace;
font-size: 14px;
line-height: 1.5;
box-shadow: 0 4px 16px rgba(0,0,0,0.1);
border: 1px solid #4a5568;
}
/* Sidebar styling */
.gradio-column {
background: rgba(255, 255, 255, 0.8);
backdrop-filter: blur(10px);
border-radius: 16px;
padding: 20px;
margin: 8px;
border: 1px solid rgba(255, 255, 255, 0.2);
box-shadow: 0 4px 16px rgba(0,0,0,0.05);
}
/* Footer styling */
.gradio-markdown hr {
border: none;
height: 1px;
background: linear-gradient(90deg, transparent, #e2e8f0, transparent);
margin: 2rem 0;
}
/* Responsive design */
@media (max-width: 768px) {
.main {
margin: 10px;
padding: 20px;
border-radius: 16px;
}
.gradio-markdown h1 {
font-size: 2rem;
}
.chatbot .message.user,
.chatbot .message.bot {
margin-left: 5%;
margin-right: 5%;
}
}
/* Loading animation */
.loading {
display: inline-block;
width: 20px;
height: 20px;
border: 3px solid rgba(102, 126, 234, 0.3);
border-radius: 50%;
border-top-color: #667eea;
animation: spin 1s ease-in-out infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
/* Scroll styling */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%);
}
"""
# Create Gradio interface with modern design
with gr.Blocks(
title="π€ Dhanishtha-2.0-preview | Advanced Reasoning AI",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
font_mono=gr.themes.GoogleFont("JetBrains Mono")
),
css=custom_css,
head="<link rel='icon' href='π€' type='image/svg+xml'>"
) as demo:
# Header Section
gr.HTML("""
<div style="text-align: center; padding: 2rem 0; background: linear-gradient(135deg, rgba(102, 126, 234, 0.1) 0%, rgba(118, 75, 162, 0.1) 100%); border-radius: 20px; margin-bottom: 2rem; border: 1px solid rgba(102, 126, 234, 0.2);">
<h1 style="margin: 0; font-size: 3.5rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 800;">
π€ Dhanishtha-2.0-preview
</h1>
<p style="font-size: 1.2rem; color: #64748b; margin: 1rem 0; font-weight: 500;">
Advanced Reasoning AI with Transparent Thinking Process
</p>
<div style="display: flex; justify-content: center; gap: 2rem; flex-wrap: wrap; margin-top: 1.5rem;">
<div style="background: rgba(74, 144, 226, 0.1); padding: 0.8rem 1.5rem; border-radius: 12px; border: 1px solid rgba(74, 144, 226, 0.2);">
<span style="color: #4a90e2; font-weight: 600;">π§ Multi-step Reasoning</span>
</div>
<div style="background: rgba(142, 68, 173, 0.1); padding: 0.8rem 1.5rem; border-radius: 12px; border: 1px solid rgba(142, 68, 173, 0.2);">
<span style="color: #8e44ad; font-weight: 600;">π Emotional Intelligence</span>
</div>
<div style="background: rgba(34, 197, 94, 0.1); padding: 0.8rem 1.5rem; border-radius: 12px; border: 1px solid rgba(34, 197, 94, 0.2);">
<span style="color: #22c55e; font-weight: 600;">π Real-time Streaming</span>
</div>
</div>
</div>
""")
# Main Chat Interface
with gr.Row(equal_height=True):
with gr.Column(scale=4, min_width=600):
# Chat Area
with gr.Group():
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
height=650,
show_copy_button=True,
show_share_button=True,
type='messages', # Use openai-style messages format
avatar_images=(
"https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/themes/utils/profile_avatar.png",
"π€"
),
render_markdown=True,
sanitize_html=False, # Allow HTML for thinking blocks
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
]
)
# Input Section
with gr.Group():
with gr.Row():
msg = gr.Textbox(
container=False,
placeholder="π Ask me anything! I'll show you my thinking and emotional reasoning process...",
label="",
autofocus=True,
scale=8,
lines=1,
max_lines=5
)
with gr.Column(scale=1, min_width=120):
send_btn = gr.Button(
"π Send",
variant="primary",
size="lg"
)
clear_btn = gr.Button(
"ποΈ Clear",
variant="secondary",
size="sm"
)
# Settings Sidebar
with gr.Column(scale=1, min_width=350):
with gr.Group():
gr.HTML("""
<div style="text-align: center; padding: 1rem; background: linear-gradient(135deg, rgba(102, 126, 234, 0.1) 0%, rgba(118, 75, 162, 0.1) 100%); border-radius: 12px; margin-bottom: 1rem;">
<h3 style="margin: 0; color: #667eea; font-weight: 600;">βοΈ Generation Settings</h3>
</div>
""")
max_tokens = gr.Slider(
minimum=1,
maximum=40960,
value=2048,
step=1,
label="π― Max Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="π‘οΈ Temperature",
info="Controls randomness in generation"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="π² Top-p (Nucleus Sampling)",
info="Controls diversity of generation"
)
with gr.Row():
stop_btn = gr.Button(
"βΉοΈ Stop Generation",
variant="stop",
size="sm"
)
# Model Information Panel
with gr.Group():
gr.HTML("""
<div style="background: linear-gradient(135deg, rgba(34, 197, 94, 0.1) 0%, rgba(59, 130, 246, 0.1) 100%); border-radius: 12px; padding: 1.5rem; border: 1px solid rgba(34, 197, 94, 0.2);">
<h3 style="margin: 0 0 1rem 0; color: #22c55e; font-weight: 600;">π Model Information</h3>
<div style="color: #64748b; line-height: 1.6;">
<strong style="color: #1e293b;">Model:</strong> HelpingAI/Dhanishtha-2.0-preview<br>
<strong style="color: #1e293b;">Type:</strong> Advanced Reasoning LLM<br>
<strong style="color: #1e293b;">Features:</strong> Multi-step reasoning, emotional intelligence<br>
<strong style="color: #1e293b;">Special:</strong> Transparent thinking process with <think> and <ser> blocks
</div>
</div>
""")
# Performance Stats (placeholder)
with gr.Group():
gr.HTML("""
<div style="background: linear-gradient(135deg, rgba(168, 85, 247, 0.1) 0%, rgba(236, 72, 153, 0.1) 100%); border-radius: 12px; padding: 1.5rem; border: 1px solid rgba(168, 85, 247, 0.2);">
<h3 style="margin: 0 0 1rem 0; color: #a855f7; font-weight: 600;">β‘ Performance</h3>
<div style="color: #64748b; line-height: 1.6;">
<strong style="color: #1e293b;">Status:</strong> <span style="color: #22c55e;">Active β
</span><br>
<strong style="color: #1e293b;">Response Mode:</strong> Streaming<br>
<strong style="color: #1e293b;">Reasoning:</strong> Enhanced<br>
<strong style="color: #1e293b;">Context:</strong> 8192 tokens
</div>
</div>
""")
# Example Prompts Section
with gr.Group():
gr.HTML("""
<div style="text-align: center; padding: 1.5rem; background: linear-gradient(135deg, rgba(245, 158, 11, 0.1) 0%, rgba(251, 146, 60, 0.1) 100%); border-radius: 16px; margin: 2rem 0; border: 1px solid rgba(245, 158, 11, 0.2);">
<h3 style="margin: 0 0 1rem 0; color: #f59e0b; font-weight: 600;">π‘ Example Prompts</h3>
<p style="color: #64748b; margin: 0;">Try these prompts to see the thinking and emotional reasoning process in action!</p>
</div>
""")
gr.Examples(
examples=[
["Hello! Can you introduce yourself and show me your thinking and emotional reasoning process?"],
["Solve this step by step: What is 15% of 240? Show your complete reasoning."],
["Explain quantum entanglement in simple terms with your thought process"],
["Write a short Python function to find the factorial of a number and explain your approach"],
["What are the pros and cons of renewable energy? Include your emotional perspective using SER."],
["Help me understand the difference between AI and machine learning with examples"],
["Create a haiku about artificial intelligence and explain your creative process"],
["Explain why the sky is blue using physics principles with step-by-step thinking"],
["What's your favorite type of conversation and why? Show your emotional reasoning using SER format."],
["How do you handle complex ethical dilemmas? Walk me through your thinking and emotional process."],
["Tell me about a time when you had to change your mind about something. Use both thinking and SER blocks."],
["What makes you feel most fulfilled in conversations? Use structured emotional reasoning."]
],
inputs=msg,
label="",
examples_per_page=6
)
# Event handlers
def clear_chat():
"""Clear the chat history"""
return [], ""
# Message submission events
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1,
show_progress="minimal"
)
send_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1,
show_progress="minimal"
)
# Clear chat event
clear_btn.click(
clear_chat,
outputs=[chatbot, msg],
show_progress=False
)
# Footer Section
gr.HTML("""
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, rgba(71, 85, 105, 0.1) 0%, rgba(100, 116, 139, 0.1) 100%); border-radius: 16px; margin-top: 2rem; border: 1px solid rgba(71, 85, 105, 0.2);">
<h3 style="color: #475569; font-weight: 600; margin-bottom: 1rem;">π§ Technical Specifications</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1rem; color: #64748b; line-height: 1.6;">
<div>
<strong style="color: #1e293b;">Model:</strong> HelpingAI/Dhanishtha-2.0-preview<br>
<strong style="color: #1e293b;">Framework:</strong> Transformers + Gradio
</div>
<div>
<strong style="color: #1e293b;">Features:</strong> Real-time streaming<br>
<strong style="color: #1e293b;">Reasoning:</strong> Multi-step with transparency
</div>
<div>
<strong style="color: #1e293b;">Special Tags:</strong> <think> and <ser> blocks<br>
<strong style="color: #1e293b;">Sampling:</strong> Custom temperature & top-p
</div>
</div>
<hr style="border: none; height: 1px; background: linear-gradient(90deg, transparent, #e2e8f0, transparent); margin: 1.5rem 0;">
<p style="color: #64748b; margin: 0; font-size: 14px;">
π <strong>Built with β€οΈ using Gradio and Transformers</strong> |
π‘ The first LLM to show transparent thinking and emotional reasoning processes
</p>
</div>
""")
if __name__ == "__main__":
demo.queue(
max_size=30,
default_concurrency_limit=2
).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
quiet=False,
favicon_path="π€",
show_tips=True,
enable_queue=True
) |