File size: 25,807 Bytes
da87199
 
 
 
 
 
 
05dc4f5
 
da87199
 
 
 
 
 
 
5718b5c
 
75b15f6
5718b5c
00dba49
 
417b22d
05dc4f5
417b22d
c19847c
417b22d
657527f
0889c6d
657527f
 
0889c6d
4bf30b7
0889c6d
 
 
 
657527f
 
 
 
417b22d
f3a07fd
05dc4f5
417b22d
 
 
05dc4f5
 
417b22d
 
 
 
 
 
 
 
 
05dc4f5
417b22d
 
 
05dc4f5
417b22d
 
 
 
 
 
 
 
657527f
f3a07fd
 
417b22d
657527f
417b22d
 
 
 
 
c19847c
05dc4f5
c19847c
05dc4f5
6964d3d
4bf30b7
da87199
 
1670280
 
 
 
da87199
 
 
5718b5c
c19847c
5718b5c
c19847c
75b15f6
c19847c
 
 
75b15f6
 
ced8ba1
 
5718b5c
75b15f6
 
1670280
75b15f6
 
 
 
 
c19847c
 
 
75b15f6
 
5718b5c
75b15f6
 
1670280
75b15f6
 
 
 
00dba49
c19847c
 
 
5718b5c
00dba49
 
 
ced8ba1
 
 
5718b5c
 
 
e828578
ced8ba1
 
 
 
 
00dba49
 
 
5718b5c
 
 
 
 
 
00dba49
c19847c
5718b5c
c19847c
da87199
 
 
 
 
 
ced8ba1
da87199
 
 
 
 
 
 
 
 
 
ced8ba1
 
 
 
 
 
 
da87199
 
 
 
75b15f6
 
1670280
75b15f6
 
 
da87199
 
 
c3d078f
da87199
 
 
 
 
 
 
 
 
 
 
 
 
ced8ba1
 
 
 
 
 
 
c3d078f
da87199
 
 
c19847c
5718b5c
c19847c
da87199
 
 
 
c19847c
a9e7179
5718b5c
da87199
 
 
 
 
 
 
 
ced8ba1
 
5718b5c
da87199
 
 
 
 
 
 
5718b5c
 
da87199
 
 
 
5718b5c
da87199
 
 
c19847c
5718b5c
c19847c
da87199
 
 
 
ced8ba1
 
 
da87199
ced8ba1
 
da87199
 
 
00dba49
e828578
00dba49
 
da87199
 
 
c19847c
5718b5c
c19847c
ced8ba1
 
 
 
 
 
 
c19847c
 
 
 
 
 
ced8ba1
da87199
 
5718b5c
da87199
ced8ba1
 
75b15f6
 
00dba49
c3d078f
5718b5c
c3d078f
75b15f6
 
 
c3d078f
75b15f6
 
 
da87199
00dba49
5718b5c
 
00dba49
c3d078f
 
 
 
ced8ba1
 
e828578
c19847c
657527f
 
00dba49
75b15f6
 
c3d078f
 
da87199
ced8ba1
c19847c
5718b5c
c19847c
da87199
 
5718b5c
da87199
 
 
 
 
 
 
 
 
 
ced8ba1
 
 
 
 
 
657527f
ced8ba1
 
 
da87199
 
 
c19847c
05dc4f5
c19847c
da87199
417b22d
 
 
 
 
 
 
 
657527f
da87199
 
 
 
ced8ba1
05dc4f5
 
e828578
05dc4f5
 
 
657527f
 
 
05dc4f5
 
 
 
9237ddf
 
657527f
05dc4f5
417b22d
ced8ba1
05dc4f5
 
 
 
 
 
ced8ba1
05dc4f5
ced8ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05dc4f5
4bf30b7
ced8ba1
 
 
 
 
 
c19847c
ced8ba1
 
 
 
 
4bf30b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c19847c
 
 
da87199
 
 
35e3ef0
9de7a98
 
 
c19847c
f89a031
 
d36bd86
 
dee934a
d36bd86
 
c19847c
f89a031
 
86c2c71
 
f89a031
c19847c
d7fbecb
 
6237077
d7fbecb
 
c19847c
f89a031
 
86c2c71
 
f89a031
c19847c
f89a031
 
35e3ef0
 
f89a031
c19847c
f89a031
 
35e3ef0
 
f89a031
c19847c
f89a031
 
 
 
 
 
 
 
 
 
 
 
 
 
35e3ef0
 
da87199
 
 
 
35e3ef0
 
f89a031
c19847c
f89a031
 
35e3ef0
 
f89a031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da87199
 
 
c19847c
e828578
c19847c
417b22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e828578
 
417b22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdad5ad
417b22d
6964d3d
417b22d
6964d3d
 
c255c5e
417b22d
bdad5ad
417b22d
6964d3d
417b22d
 
e828578
 
 
 
 
da87199
e828578
 
 
6964d3d
e828578
 
bdad5ad
e828578
 
 
 
 
2462924
e828578
 
bdad5ad
e828578
 
 
 
 
 
bdad5ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e828578
bdad5ad
 
 
 
 
 
 
 
417b22d
bdad5ad
 
 
 
417b22d
0889c6d
e828578
 
bdad5ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
#!/usr/bin/env python

import os
import re
import tempfile
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

# CSV/TXT ๋ถ„์„
import pandas as pd
# PDF ํ…์ŠคํŠธ ์ถ”์ถœ
import PyPDF2

##############################################################################
# SERPHouse API key from environment variable
##############################################################################
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")

##############################################################################
# ๊ฐ„๋‹จํ•œ ํ‚ค์›Œ๋“œ ์ถ”์ถœ ํ•จ์ˆ˜ (ํ•œ๊ธ€ + ์•ŒํŒŒ๋ฒณ + ์ˆซ์ž + ๊ณต๋ฐฑ ๋ณด์กด)
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
    """
    1) ํ•œ๊ธ€(๊ฐ€-ํžฃ), ์˜์–ด(a-zA-Z), ์ˆซ์ž(0-9), ๊ณต๋ฐฑ๋งŒ ๋‚จ๊น€
    2) ๊ณต๋ฐฑ ๊ธฐ์ค€ ํ† ํฐ ๋ถ„๋ฆฌ
    3) ์ตœ๋Œ€ top_k๊ฐœ๋งŒ
    """
    text = re.sub(r"[^a-zA-Z0-9๊ฐ€-ํžฃ\s]", "", text)
    tokens = text.split()
    key_tokens = tokens[:top_k]
    return " ".join(key_tokens)

##############################################################################
# SERPHouse Live endpoint ํ˜ธ์ถœ
# - ์ƒ์œ„ 20๊ฐœ ๊ฒฐ๊ณผ JSON์„ LLM์— ๋„˜๊ธธ ๋•Œ link, snippet ๋“ฑ ๋ชจ๋‘ ํฌํ•จ
##############################################################################
def do_web_search(query: str) -> str:
    """
    ์ƒ์œ„ 20๊ฐœ 'organic' ๊ฒฐ๊ณผ item ์ „์ฒด(์ œ๋ชฉ, link, snippet ๋“ฑ)๋ฅผ
    JSON ๋ฌธ์ž์—ด ํ˜•ํƒœ๋กœ ๋ฐ˜ํ™˜
    """
    try:
        url = "https://api.serphouse.com/serp/live"
        params = {
            "q": query,
            "domain": "google.com",
            "lang": "en",
            "device": "desktop",
            "serp_type": "web",
            "num_result": "20",
            "api_token": SERPHOUSE_API_KEY,
        }
        resp = requests.get(url, params=params, timeout=30)
        resp.raise_for_status()
        data = resp.json()

        results = data.get("results", {})
        organic = results.get("results", {}).get("organic", [])
        if not organic:
            return "No web search results found."

        summary_lines = []
        for idx, item in enumerate(organic[:20], start=1):
            item_json = json.dumps(item, ensure_ascii=False, indent=2)
            summary_lines.append(f"Result {idx}:\n{item_json}\n")

        return "\n".join(summary_lines)
    except Exception as e:
        logger.error(f"Web search failed: {e}")
        return f"Web search failed: {str(e)}"


##############################################################################
# ๋ชจ๋ธ/ํ”„๋กœ์„ธ์„œ ๋กœ๋”ฉ
##############################################################################
MAX_CONTENT_CHARS = 4000
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma3-R1945-27B")

processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="eager"
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))


##############################################################################
# CSV, TXT, PDF ๋ถ„์„ ํ•จ์ˆ˜
##############################################################################
def analyze_csv_file(path: str) -> str:
    """
    CSV ํŒŒ์ผ์„ ์ „์ฒด ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜. ๋„ˆ๋ฌด ๊ธธ ๊ฒฝ์šฐ ์ผ๋ถ€๋งŒ ํ‘œ์‹œ.
    """
    try:
        df = pd.read_csv(path)
        if df.shape[0] > 50 or df.shape[1] > 10:
            df = df.iloc[:50, :10]
        df_str = df.to_string()
        if len(df_str) > MAX_CONTENT_CHARS:
            df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
    except Exception as e:
        return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"


def analyze_txt_file(path: str) -> str:
    """
    TXT ํŒŒ์ผ ์ „๋ฌธ ์ฝ๊ธฐ. ๋„ˆ๋ฌด ๊ธธ๋ฉด ์ผ๋ถ€๋งŒ ํ‘œ์‹œ.
    """
    try:
        with open(path, "r", encoding="utf-8") as f:
            text = f.read()
        if len(text) > MAX_CONTENT_CHARS:
            text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
    except Exception as e:
        return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"


def pdf_to_markdown(pdf_path: str) -> str:
    """
    PDF โ†’ Markdown. ํŽ˜์ด์ง€๋ณ„๋กœ ๊ฐ„๋‹จํžˆ ํ…์ŠคํŠธ ์ถ”์ถœ.
    """
    text_chunks = []
    try:
        with open(pdf_path, "rb") as f:
            reader = PyPDF2.PdfReader(f)
            max_pages = min(5, len(reader.pages))
            for page_num in range(max_pages):
                page = reader.pages[page_num]
                page_text = page.extract_text() or ""
                page_text = page_text.strip()
                if page_text:
                    # ํŽ˜์ด์ง€๋ณ„ ์ตœ๋Œ€์น˜ ์ž˜๋ผ์„œ ์‚ฌ์šฉ
                    if len(page_text) > MAX_CONTENT_CHARS // max_pages:
                        page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
                    text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
            if len(reader.pages) > max_pages:
                text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
    except Exception as e:
        return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"

    full_text = "\n".join(text_chunks)
    if len(full_text) > MAX_CONTENT_CHARS:
        full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."

    return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"


##############################################################################
# ์ด๋ฏธ์ง€/๋น„๋””์˜ค ์—…๋กœ๋“œ ์ œํ•œ ๊ฒ€์‚ฌ
##############################################################################
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
            image_count += 1
    return image_count, video_count


def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if isinstance(item["content"], list) and len(item["content"]) > 0:
            file_path = item["content"][0]
            if isinstance(file_path, str):
                if file_path.endswith(".mp4"):
                    video_count += 1
                elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
                    image_count += 1
    return image_count, video_count


def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    media_files = []
    for f in message["files"]:
        if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
            media_files.append(f)

    new_image_count, new_video_count = count_files_in_new_message(media_files)
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count

    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and videos is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("Using <image> tags with video files is not supported.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
        return False
    
    if "<image>" in message["text"]:
        image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
        image_tag_count = message["text"].count("<image>")
        if image_tag_count != len(image_files):
            gr.Warning("The number of <image> tags in the text does not match the number of image files.")
            return False

    return True


##############################################################################
# ๋น„๋””์˜ค ์ฒ˜๋ฆฌ
##############################################################################
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = max(int(fps), int(total_frames / 10))
    frames = []

    for i in range(0, total_frames, frame_interval):
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
            if len(frames) >= 5:
                break

    vidcap.release()
    return frames


def process_video(video_path: str) -> list[dict]:
    content = []
    frames = downsample_video(video_path)
    for frame in frames:
        pil_image, timestamp = frame
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "url": temp_file.name})
    logger.debug(f"{content=}")
    return content


##############################################################################
# interleaved <image> ์ฒ˜๋ฆฌ
##############################################################################
def process_interleaved_images(message: dict) -> list[dict]:
    parts = re.split(r"(<image>)", message["text"])
    content = []
    image_index = 0
    
    image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
    
    for part in parts:
        if part == "<image>" and image_index < len(image_files):
            content.append({"type": "image", "url": image_files[image_index]})
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        else:
            # ๋นˆ ๋ฌธ์ž์—ด๋„ content์— ์ถ”๊ฐ€๋  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ํ•„์š”ํ•œ ๊ฒฝ์šฐ ์กฐ์ •
            if isinstance(part, str) and part != "<image>":
                content.append({"type": "text", "text": part})
    return content


##############################################################################
# PDF + CSV + TXT + ์ด๋ฏธ์ง€/๋น„๋””์˜ค
##############################################################################
def is_image_file(file_path: str) -> bool:
    return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))

def is_video_file(file_path: str) -> bool:
    return file_path.endswith(".mp4")

def is_document_file(file_path: str) -> bool:
    return (
        file_path.lower().endswith(".pdf")
        or file_path.lower().endswith(".csv")
        or file_path.lower().endswith(".txt")
    )


def process_new_user_message(message: dict) -> list[dict]:
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}]

    video_files = [f for f in message["files"] if is_video_file(f)]
    image_files = [f for f in message["files"] if is_image_file(f)]
    csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
    txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
    pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]

    content_list = [{"type": "text", "text": message["text"]}]

    for csv_path in csv_files:
        csv_analysis = analyze_csv_file(csv_path)
        content_list.append({"type": "text", "text": csv_analysis})

    for txt_path in txt_files:
        txt_analysis = analyze_txt_file(txt_path)
        content_list.append({"type": "text", "text": txt_analysis})

    for pdf_path in pdf_files:
        pdf_markdown = pdf_to_markdown(pdf_path)
        content_list.append({"type": "text", "text": pdf_markdown})

    if video_files:
        content_list += process_video(video_files[0])
        return content_list

    if "<image>" in message["text"] and image_files:
        interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
        # ์ด๋ฏธ text ๋ณธ๋ฌธ์— <image>๊ฐ€ ํฌํ•จ๋œ ๊ฒฝ์šฐ, ์ค‘๋ณต ์ฒ˜๋ฆฌ๋ฅผ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š” ์‹œ ์กฐ์ •
        if content_list and content_list[0]["type"] == "text":
            content_list = content_list[1:]
        return interleaved_content + content_list
    else:
        for img_path in image_files:
            content_list.append({"type": "image", "url": img_path})

    return content_list


##############################################################################
# history -> LLM ๋ฉ”์‹œ์ง€ ๋ณ€ํ™˜
##############################################################################
def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            elif isinstance(content, list) and len(content) > 0:
                file_path = content[0]
                if is_image_file(file_path):
                    current_user_content.append({"type": "image", "url": file_path})
                else:
                    current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})

    if current_user_content:
        messages.append({"role": "user", "content": current_user_content})
        
    return messages


##############################################################################
# ๋ฉ”์ธ ์ถ”๋ก  ํ•จ์ˆ˜ (web search ์ฒดํฌ ์‹œ ์ž๋™ ํ‚ค์›Œ๋“œ์ถ”์ถœ->๊ฒ€์ƒ‰->๊ฒฐ๊ณผ system msg)
##############################################################################
@spaces.GPU(duration=120)
def run(
    message: dict,
    history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 512,
    use_web_search: bool = False,
    web_search_query: str = "",
) -> Iterator[str]:

    if not validate_media_constraints(message, history):
        yield ""
        return

    try:
        combined_system_msg = ""

        # ๋‚ด๋ถ€์ ์œผ๋กœ๋งŒ ์‚ฌ์šฉ (UI์—์„œ๋Š” ๋ณด์ด์ง€ ์•Š์Œ)
        if system_prompt.strip():
            combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"

        if use_web_search:
            user_text = message["text"]
            ws_query = extract_keywords(user_text, top_k=5)
            if ws_query.strip():
                logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
                ws_result = do_web_search(ws_query)
                combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n"
                # >>> ์ถ”๊ฐ€๋œ ์•ˆ๋‚ด ๋ฌธ๊ตฌ (๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ์˜ link ๋“ฑ ์ถœ์ฒ˜๋ฅผ ํ™œ์šฉ)
                combined_system_msg += "[์ฐธ๊ณ : ์œ„ ๊ฒ€์ƒ‰๊ฒฐ๊ณผ ๋‚ด์šฉ๊ณผ link๋ฅผ ์ถœ์ฒ˜๋กœ ์ธ์šฉํ•˜์—ฌ ๋‹ต๋ณ€ํ•ด ์ฃผ์„ธ์š”.]\n\n"
            else:
                combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"

        messages = []
        if combined_system_msg.strip():
            messages.append({
                "role": "system",
                "content": [{"type": "text", "text": combined_system_msg.strip()}],
            })

        messages.extend(process_history(history))

        user_content = process_new_user_message(message)
        for item in user_content:
            if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
                item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        messages.append({"role": "user", "content": user_content})

        inputs = processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt",
        ).to(device=model.device, dtype=torch.bfloat16)

        streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
        gen_kwargs = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
        )

        t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
        t.start()

        output = ""
        for new_text in streamer:
            output += new_text
            yield output

    except Exception as e:
        logger.error(f"Error in run: {str(e)}")
        yield f"์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค. ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"


##############################################################################
# [์ถ”๊ฐ€] ๋ณ„๋„ ํ•จ์ˆ˜์—์„œ model.generate(...)๋ฅผ ํ˜ธ์ถœ, OOM ์บ์น˜
##############################################################################
def _model_gen_with_oom_catch(**kwargs):
    """
    ๋ณ„๋„ ์Šค๋ ˆ๋“œ์—์„œ OutOfMemoryError๋ฅผ ์žก์•„์ฃผ๊ธฐ ์œ„ํ•ด
    """
    try:
        model.generate(**kwargs)
    except torch.cuda.OutOfMemoryError:
        raise RuntimeError(
            "[OutOfMemoryError] GPU ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. "
            "Max New Tokens์„ ์ค„์ด๊ฑฐ๋‚˜, ํ”„๋กฌํ”„ํŠธ ๊ธธ์ด๋ฅผ ์ค„์—ฌ์ฃผ์„ธ์š”."
        )


##############################################################################
# ์˜ˆ์‹œ๋“ค (ํ•œ๊ธ€ํ™”)
##############################################################################
examples = [
    [
        {
            "text": "๋‘ PDF ํŒŒ์ผ ๋‚ด์šฉ์„ ๋น„๊ตํ•˜๋ผ.",
            "files": [
                "assets/additional-examples/before.pdf",
                "assets/additional-examples/after.pdf",
            ],
        }
    ],
    [
        {
            "text": "CSV ํŒŒ์ผ ๋‚ด์šฉ์„ ์š”์•ฝ, ๋ถ„์„ํ•˜๋ผ",
            "files": ["assets/additional-examples/sample-csv.csv"],
        }
    ],
    [
        {
            "text": "์ด ์˜์ƒ์˜ ๋‚ด์šฉ์„ ์„ค๋ช…ํ•˜๋ผ",
            "files": ["assets/additional-examples/tmp.mp4"],
        }
    ],
    [
        {
            "text": "ํ‘œ์ง€ ๋‚ด์šฉ์„ ์„ค๋ช…ํ•˜๊ณ  ๊ธ€์ž๋ฅผ ์ฝ์–ด์ฃผ์„ธ์š”.",
            "files": ["assets/additional-examples/maz.jpg"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ ์ด ์˜์–‘์ œ๋ฅผ <image> ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ์ด ์ œํ’ˆ <image>์„ ์ƒˆ๋กœ ์‚ฌ๋ ค ํ•ฉ๋‹ˆ๋‹ค. ํ•จ๊ป˜ ์„ญ์ทจํ•  ๋•Œ ์ฃผ์˜ํ•ด์•ผ ํ•  ์ ์ด ์žˆ์„๊นŒ์š”?",
            "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
        }
    ],
    [
        {
            "text": "์ด ์ ๋ถ„์„ ํ’€์–ด์ฃผ์„ธ์š”.",
            "files": ["assets/additional-examples/4.png"],
        }
    ],
    [
        {
            "text": "์ด ํ‹ฐ์ผ“์€ ์–ธ์ œ ๋ฐœ๊ธ‰๋œ ๊ฒƒ์ด๊ณ , ๊ฐ€๊ฒฉ์€ ์–ผ๋งˆ์ธ๊ฐ€์š”?",
            "files": ["assets/additional-examples/2.png"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€๋“ค์˜ ์ˆœ์„œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์งง์€ ์ด์•ผ๊ธฐ๋ฅผ ๋งŒ๋“ค์–ด ์ฃผ์„ธ์š”.",
            "files": [
                "assets/sample-images/09-1.png",
                "assets/sample-images/09-2.png",
                "assets/sample-images/09-3.png",
                "assets/sample-images/09-4.png",
                "assets/sample-images/09-5.png",
            ],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€์˜ ์‹œ๊ฐ์  ์š”์†Œ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ์‹œ๋ฅผ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
        }
    ],
    [
        {
            "text": "๋™์ผํ•œ ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆฌ๋Š” matplotlib ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/additional-examples/barchart.png"],
        }
    ],
    [
        {
            "text": "์ด ์„ธ๊ณ„์—์„œ ์‚ด๊ณ  ์žˆ์„ ์ƒ๋ฌผ๋“ค์„ ์ƒ์ƒํ•ด์„œ ๋ฌ˜์‚ฌํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/08.png"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€์— ์žˆ๋Š” ํ…์ŠคํŠธ๋ฅผ ๊ทธ๋Œ€๋กœ ์ฝ์–ด์„œ ๋งˆํฌ๋‹ค์šด ํ˜•ํƒœ๋กœ ์ ์–ด์ฃผ์„ธ์š”.",
            "files": ["assets/additional-examples/3.png"],
        }
    ],
    [
        {
            "text": "์ด ํ‘œ์ง€ํŒ์—๋Š” ๋ฌด์Šจ ๋ฌธ๊ตฌ๊ฐ€ ์ ํ˜€ ์žˆ๋‚˜์š”?",
            "files": ["assets/sample-images/02.png"],
        }
    ],
    [
        {
            "text": "๋‘ ์ด๋ฏธ์ง€๋ฅผ ๋น„๊ตํ•ด์„œ ๊ณตํ†ต์ ๊ณผ ์ฐจ์ด์ ์„ ๋งํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/03.png"],
        }
    ],
]


##############################################################################
# Gradio UI (Blocks) ๊ตฌ์„ฑ (์ขŒ์ธก ์‚ฌ์ด๋“œ ๋ฉ”๋‰ด ์—†์ด ์ „์ฒดํ™”๋ฉด ์ฑ„ํŒ…)
##############################################################################
css = """
body {
    background: linear-gradient(135deg, #667eea, #764ba2);
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    color: #333;
    margin: 0;
    padding: 0;
}
.gradio-container {
    background: rgba(255, 255, 255, 0.95);
    border-radius: 15px;
    padding: 30px 40px;
    box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
    margin: 40px auto;
    max-width: 1200px;
}
.gradio-container h1 {
    color: #333;
    text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable {
    width: 95% !important;
    max-width: unset !important;
}
#examples_container {
    margin: auto;
    width: 90%;
}
#examples_row {
    justify-content: center;
}
button, .btn {
    background: linear-gradient(90deg, #ff8a00, #e52e71);
    border: none;
    color: #fff;
    padding: 12px 24px;
    text-transform: uppercase;
    font-weight: bold;
    letter-spacing: 1px;
    border-radius: 5px;
    cursor: pointer;
    transition: transform 0.2s ease-in-out;
}
button:hover, .btn:hover {
    transform: scale(1.05);
}
"""

title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐Ÿค— Gemma3-R1945-27B </h1>
<p align="center" style="font-size:1.1em; color:#555;">
    โœ…Agentic AI Platform โœ…Reasoning & Uncensored โœ…Multimodal & VLM โœ…Deep-Research & RAG <br>
    Operates on an โœ…'NVIDIA A100 GPU' as an independent local server, enhancing security and preventing information leakage.<br>
    @Based by 'MS Gemma-3-27b' / @Powered by 'MOUSE-II'(VIDRAFT)
</p>
"""

with gr.Blocks(css=css, title="Gemma3-R1945-27B") as demo:
    gr.Markdown(title_html)

    # ์›น์„œ์น˜ ์˜ต์…˜์€ ํ™”๋ฉด์— ํ‘œ์‹œ (ํ•˜์ง€๋งŒ ์‹œ์Šคํ…œ ํ”„๋กฌํ”„ํŠธ, ํ† ํฐ ์Šฌ๋ผ์ด๋” ๋“ฑ์€ ๊ฐ์ถค)
    web_search_checkbox = gr.Checkbox(
        label="Use Web Search (์ž๋™ ํ‚ค์›Œ๋“œ ์ถ”์ถœ)",
        value=False
    )

    # ๋‚ด๋ถ€์ ์œผ๋กœ ์“ฐ์ด์ง€๋งŒ ํ™”๋ฉด์—๋Š” ๋…ธ์ถœ๋˜์ง€ ์•Š๋„๋ก ์„ค์ •
    system_prompt_box = gr.Textbox(
        lines=3,
        value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside tags, and then provide your solution or response to the problem. Please answer in Korean.You have the ability to read English sources, but you **must always speak in Korean**.Even if the search results are in English, answer in Korean.",
        visible=False  # ํ™”๋ฉด์—์„œ ๊ฐ์ถค
    )
    
    max_tokens_slider = gr.Slider(
        label="Max New Tokens",
        minimum=100,
        maximum=8000,
        step=50,
        value=1000,
        visible=False  # ํ™”๋ฉด์—์„œ ๊ฐ์ถค
    )
    
    web_search_text = gr.Textbox(
        lines=1,
        label="(Unused) Web Search Query",
        placeholder="No direct input needed",
        visible=False  # ํ™”๋ฉด์—์„œ ๊ฐ์ถค
    )
    
    # ์ฑ„ํŒ… ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌ์„ฑ
    chat = gr.ChatInterface(
        fn=run,
        type="messages",
        chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
        textbox=gr.MultimodalTextbox(
            file_types=[
                ".webp", ".png", ".jpg", ".jpeg", ".gif",
                ".mp4", ".csv", ".txt", ".pdf"
            ],
            file_count="multiple",
            autofocus=True
        ),
        multimodal=True,
        additional_inputs=[
            system_prompt_box,
            max_tokens_slider,
            web_search_checkbox,
            web_search_text,
        ],
        stop_btn=False,
        title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
        examples=examples,
        run_examples_on_click=False,
        cache_examples=False,
        css_paths=None,
        delete_cache=(1800, 1800),
    )

    # ์˜ˆ์ œ ์„น์…˜ - ์ด๋ฏธ ChatInterface์— examples๊ฐ€ ์„ค์ •๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” ์„ค๋ช…๋งŒ ํ‘œ์‹œ
    with gr.Row(elem_id="examples_row"):
        with gr.Column(scale=12, elem_id="examples_container"):
            gr.Markdown("### Example Inputs (click to load)")


if __name__ == "__main__":
    # ๋กœ์ปฌ์—์„œ๋งŒ ์‹คํ–‰ ์‹œ
    demo.launch()