Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,35 +22,33 @@ import pandas as pd
|
|
| 22 |
import PyPDF2
|
| 23 |
|
| 24 |
##############################################################################
|
| 25 |
-
# SERPHouse API key
|
| 26 |
##############################################################################
|
| 27 |
-
SERPHOUSE_API_KEY = "
|
| 28 |
|
| 29 |
##############################################################################
|
| 30 |
-
#
|
| 31 |
-
# - ์ค์ ํ๊ฒฝ์ ๋ง๊ฒ stopwords, ํํ์ ๋ถ์ ๋ฑ ๊ณ ๋ํ ๊ฐ๋ฅ
|
| 32 |
##############################################################################
|
| 33 |
def extract_keywords(text: str, top_k: int = 5) -> str:
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
text = text.lower()
|
| 36 |
-
# 2) ์ํ๋ฒณ/์ซ์/๊ณต๋ฐฑ ์ ์ธ ๋ฌธ์ ์ ๊ฑฐ
|
| 37 |
text = re.sub(r"[^a-z0-9\s]", "", text)
|
| 38 |
-
# 3) ๊ณต๋ฐฑ๋จ์ ํ ํฐ
|
| 39 |
tokens = text.split()
|
| 40 |
-
# 4) ์ฐ์ ์ ์์์ ๋ช ๊ฐ ํ ํฐ๋ง ์ฌ์ฉ (top_k=5)
|
| 41 |
-
# - ํ์์ stopword ์ ๊ฑฐ๋ ๋น๋์ ๊ณ์ฐ ํ ์์ k๊ฐ ์ถ์ถํ๋๋ก ๋ณ๊ฒฝ ๊ฐ๋ฅ
|
| 42 |
key_tokens = tokens[:top_k]
|
| 43 |
-
# 5) ๊ณต๋ฐฑ์ผ๋ก join
|
| 44 |
return " ".join(key_tokens)
|
| 45 |
|
| 46 |
##############################################################################
|
| 47 |
-
#
|
| 48 |
-
# https://api.serphouse.com/serp/live
|
| 49 |
##############################################################################
|
| 50 |
def do_web_search(query: str) -> str:
|
| 51 |
"""
|
| 52 |
-
|
| 53 |
-
Returns top-20 results' titles as a bullet list, or an error message.
|
| 54 |
"""
|
| 55 |
try:
|
| 56 |
url = "https://api.serphouse.com/serp/live"
|
|
@@ -60,11 +58,11 @@ def do_web_search(query: str) -> str:
|
|
| 60 |
"lang": "en",
|
| 61 |
"device": "desktop",
|
| 62 |
"serp_type": "web",
|
| 63 |
-
"num_result": "20", #
|
| 64 |
"api_token": SERPHOUSE_API_KEY,
|
| 65 |
}
|
| 66 |
resp = requests.get(url, params=params, timeout=30)
|
| 67 |
-
resp.raise_for_status() #
|
| 68 |
data = resp.json()
|
| 69 |
|
| 70 |
results = data.get("results", {})
|
|
@@ -72,21 +70,21 @@ def do_web_search(query: str) -> str:
|
|
| 72 |
if not organic:
|
| 73 |
return "No web search results found."
|
| 74 |
|
| 75 |
-
# ์์ 20๊ฐ ์ ๋ชฉ๋ง ๋ฝ์์ ์ ๋ฆฌ
|
| 76 |
summary_lines = []
|
| 77 |
for idx, item in enumerate(organic[:20], start=1):
|
| 78 |
title = item.get("title", "No Title")
|
| 79 |
summary_lines.append(f"{idx}. {title}")
|
| 80 |
|
| 81 |
-
# 20๊ฐ๋ฅผ \n ์ผ๋ก ์ฐ๊ฒฐ
|
| 82 |
return "\n".join(summary_lines)
|
| 83 |
except Exception as e:
|
| 84 |
logger.error(f"Web search failed: {e}")
|
| 85 |
return f"Web search failed: {str(e)}"
|
| 86 |
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
| 91 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
| 92 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
@@ -95,16 +93,19 @@ model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
| 95 |
torch_dtype=torch.bfloat16,
|
| 96 |
attn_implementation="eager"
|
| 97 |
)
|
| 98 |
-
|
| 99 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
| 100 |
|
| 101 |
|
| 102 |
-
|
| 103 |
# CSV, TXT, PDF ๋ถ์ ํจ์
|
| 104 |
-
|
| 105 |
def analyze_csv_file(path: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 106 |
try:
|
| 107 |
df = pd.read_csv(path)
|
|
|
|
| 108 |
if df.shape[0] > 50 or df.shape[1] > 10:
|
| 109 |
df = df.iloc[:50, :10]
|
| 110 |
df_str = df.to_string()
|
|
@@ -116,6 +117,9 @@ def analyze_csv_file(path: str) -> str:
|
|
| 116 |
|
| 117 |
|
| 118 |
def analyze_txt_file(path: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 119 |
try:
|
| 120 |
with open(path, "r", encoding="utf-8") as f:
|
| 121 |
text = f.read()
|
|
@@ -127,6 +131,9 @@ def analyze_txt_file(path: str) -> str:
|
|
| 127 |
|
| 128 |
|
| 129 |
def pdf_to_markdown(pdf_path: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 130 |
text_chunks = []
|
| 131 |
try:
|
| 132 |
with open(pdf_path, "rb") as f:
|
|
@@ -137,6 +144,7 @@ def pdf_to_markdown(pdf_path: str) -> str:
|
|
| 137 |
page_text = page.extract_text() or ""
|
| 138 |
page_text = page_text.strip()
|
| 139 |
if page_text:
|
|
|
|
| 140 |
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
|
| 141 |
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
|
| 142 |
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
|
|
@@ -152,9 +160,9 @@ def pdf_to_markdown(pdf_path: str) -> str:
|
|
| 152 |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
| 153 |
|
| 154 |
|
| 155 |
-
|
| 156 |
# ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ ๊ฒ์ฌ
|
| 157 |
-
|
| 158 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
| 159 |
image_count = 0
|
| 160 |
video_count = 0
|
|
@@ -183,6 +191,13 @@ def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
|
| 183 |
|
| 184 |
|
| 185 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
media_files = []
|
| 187 |
for f in message["files"]:
|
| 188 |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
|
@@ -217,14 +232,14 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
| 217 |
return True
|
| 218 |
|
| 219 |
|
| 220 |
-
|
| 221 |
# ๋น๋์ค ์ฒ๋ฆฌ
|
| 222 |
-
|
| 223 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
| 224 |
vidcap = cv2.VideoCapture(video_path)
|
| 225 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 226 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 227 |
-
frame_interval = max(int(fps), int(total_frames / 10))
|
| 228 |
frames = []
|
| 229 |
|
| 230 |
for i in range(0, total_frames, frame_interval):
|
|
@@ -255,9 +270,9 @@ def process_video(video_path: str) -> list[dict]:
|
|
| 255 |
return content
|
| 256 |
|
| 257 |
|
| 258 |
-
|
| 259 |
# interleaved <image> ์ฒ๋ฆฌ
|
| 260 |
-
|
| 261 |
def process_interleaved_images(message: dict) -> list[dict]:
|
| 262 |
parts = re.split(r"(<image>)", message["text"])
|
| 263 |
content = []
|
|
@@ -277,9 +292,9 @@ def process_interleaved_images(message: dict) -> list[dict]:
|
|
| 277 |
return content
|
| 278 |
|
| 279 |
|
| 280 |
-
|
| 281 |
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
|
| 282 |
-
|
| 283 |
def is_image_file(file_path: str) -> bool:
|
| 284 |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
| 285 |
|
|
@@ -287,9 +302,12 @@ def is_video_file(file_path: str) -> bool:
|
|
| 287 |
return file_path.endswith(".mp4")
|
| 288 |
|
| 289 |
def is_document_file(file_path: str) -> bool:
|
| 290 |
-
return (
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
def process_new_user_message(message: dict) -> list[dict]:
|
| 295 |
if not message["files"]:
|
|
@@ -321,7 +339,7 @@ def process_new_user_message(message: dict) -> list[dict]:
|
|
| 321 |
|
| 322 |
if "<image>" in message["text"] and image_files:
|
| 323 |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
| 324 |
-
if content_list[0]["type"] == "text":
|
| 325 |
content_list = content_list[1:]
|
| 326 |
return interleaved_content + content_list
|
| 327 |
else:
|
|
@@ -331,9 +349,9 @@ def process_new_user_message(message: dict) -> list[dict]:
|
|
| 331 |
return content_list
|
| 332 |
|
| 333 |
|
| 334 |
-
|
| 335 |
# history -> LLM ๋ฉ์์ง ๋ณํ
|
| 336 |
-
|
| 337 |
def process_history(history: list[dict]) -> list[dict]:
|
| 338 |
messages = []
|
| 339 |
current_user_content: list[dict] = []
|
|
@@ -360,9 +378,9 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
| 360 |
return messages
|
| 361 |
|
| 362 |
|
| 363 |
-
|
| 364 |
-
# ๋ฉ์ธ ์ถ๋ก ํจ์
|
| 365 |
-
|
| 366 |
@spaces.GPU(duration=120)
|
| 367 |
def run(
|
| 368 |
message: dict,
|
|
@@ -378,19 +396,18 @@ def run(
|
|
| 378 |
return
|
| 379 |
|
| 380 |
try:
|
| 381 |
-
#
|
| 382 |
-
#
|
|
|
|
| 383 |
if use_web_search:
|
| 384 |
user_text = message["text"]
|
| 385 |
-
# ํค์๋ ์ถ์ถ
|
| 386 |
ws_query = extract_keywords(user_text, top_k=5)
|
| 387 |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
| 388 |
-
# ์์ 20๊ฐ ๊ฒฐ๊ณผ
|
| 389 |
ws_result = do_web_search(ws_query)
|
| 390 |
-
#
|
| 391 |
system_search_content = f"[Search top-20 Titles Based on user prompt]\n{ws_result}\n"
|
| 392 |
-
# system ๋ฉ์์ง๋ก ์ถ๊ฐ
|
| 393 |
-
# (LLM์ด ์ด ์ ๋ณด๋ฅผ ์ฐธ๊ณ ํ๋๋ก)
|
| 394 |
if system_search_content.strip():
|
| 395 |
history_system_msg = {
|
| 396 |
"role": "system",
|
|
@@ -401,25 +418,26 @@ def run(
|
|
| 401 |
"role": "system",
|
| 402 |
"content": [{"type": "text", "text": "No web search results"}]
|
| 403 |
}
|
| 404 |
-
else:
|
| 405 |
-
history_system_msg = None
|
| 406 |
|
|
|
|
| 407 |
messages = []
|
| 408 |
if system_prompt:
|
| 409 |
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
| 410 |
-
#
|
| 411 |
if history_system_msg:
|
| 412 |
messages.append(history_system_msg)
|
| 413 |
|
|
|
|
| 414 |
messages.extend(process_history(history))
|
| 415 |
|
|
|
|
| 416 |
user_content = process_new_user_message(message)
|
| 417 |
for item in user_content:
|
| 418 |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
| 419 |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
| 420 |
-
|
| 421 |
messages.append({"role": "user", "content": user_content})
|
| 422 |
|
|
|
|
| 423 |
inputs = processor.apply_chat_template(
|
| 424 |
messages,
|
| 425 |
add_generation_prompt=True,
|
|
@@ -442,15 +460,16 @@ def run(
|
|
| 442 |
for new_text in streamer:
|
| 443 |
output += new_text
|
| 444 |
yield output
|
| 445 |
-
|
| 446 |
except Exception as e:
|
| 447 |
logger.error(f"Error in run: {str(e)}")
|
| 448 |
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
| 449 |
|
| 450 |
|
| 451 |
-
|
|
|
|
|
|
|
| 452 |
examples = [
|
| 453 |
-
|
| 454 |
[
|
| 455 |
{
|
| 456 |
"text": "๋ PDF ํ์ผ ๋ด์ฉ์ ๋น๊ตํ๋ผ.",
|
|
@@ -458,7 +477,7 @@ examples = [
|
|
| 458 |
"files": [
|
| 459 |
"assets/additional-examples/before.pdf",
|
| 460 |
"assets/additional-examples/after.pdf",
|
| 461 |
-
],
|
| 462 |
}
|
| 463 |
],
|
| 464 |
[
|
|
@@ -466,37 +485,37 @@ examples = [
|
|
| 466 |
"text": "CSV ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ",
|
| 467 |
"files": ["assets/additional-examples/sample-csv.csv"],
|
| 468 |
}
|
| 469 |
-
],
|
| 470 |
[
|
| 471 |
{
|
| 472 |
"text": "์ด ์์์ ๋ด์ฉ์ ์ค๋ช
ํ๋ผ",
|
| 473 |
"files": ["assets/additional-examples/tmp.mp4"],
|
| 474 |
}
|
| 475 |
-
],
|
| 476 |
[
|
| 477 |
{
|
| 478 |
"text": "ํ์ง ๋ด์ฉ์ ์ค๋ช
ํ๊ณ ๊ธ์๋ฅผ ์ฝ์ด์ฃผ์ธ์.",
|
| 479 |
"files": ["assets/additional-examples/maz.jpg"],
|
| 480 |
}
|
| 481 |
-
],
|
| 482 |
[
|
| 483 |
{
|
| 484 |
"text": "์ด๋ฏธ ์ด ์์์ ๋ฅผ <image> ๊ฐ์ง๊ณ ์๊ณ , ์ด ์ ํ <image>์ ์๋ก ์ฌ๋ ค ํฉ๋๋ค. ํจ๊ป ์ญ์ทจํ ๋ ์ฃผ์ํด์ผ ํ ์ ์ด ์์๊น์?",
|
| 485 |
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
|
| 486 |
}
|
| 487 |
-
],
|
| 488 |
[
|
| 489 |
{
|
| 490 |
"text": "์ด ์ ๋ถ๏ฟฝ๏ฟฝ๏ฟฝ ํ์ด์ฃผ์ธ์.",
|
| 491 |
"files": ["assets/additional-examples/4.png"],
|
| 492 |
}
|
| 493 |
-
],
|
| 494 |
[
|
| 495 |
{
|
| 496 |
"text": "์ด ํฐ์ผ์ ์ธ์ ๋ฐ๊ธ๋ ๊ฒ์ด๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?",
|
| 497 |
"files": ["assets/additional-examples/2.png"],
|
| 498 |
}
|
| 499 |
-
],
|
| 500 |
[
|
| 501 |
{
|
| 502 |
"text": "์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.",
|
|
@@ -520,24 +539,19 @@ examples = [
|
|
| 520 |
"text": "๋์ผํ ๋ง๋ ๊ทธ๋ํ๋ฅผ ๊ทธ๋ฆฌ๋ matplotlib ์ฝ๋๋ฅผ ์์ฑํด์ฃผ์ธ์.",
|
| 521 |
"files": ["assets/additional-examples/barchart.png"],
|
| 522 |
}
|
| 523 |
-
],
|
| 524 |
-
|
| 525 |
[
|
| 526 |
{
|
| 527 |
"text": "์ด ์ธ๊ณ์์ ์ด๊ณ ์์ ์๋ฌผ๋ค์ ์์ํด์ ๋ฌ์ฌํด์ฃผ์ธ์.",
|
| 528 |
"files": ["assets/sample-images/08.png"],
|
| 529 |
}
|
| 530 |
],
|
| 531 |
-
|
| 532 |
-
|
| 533 |
[
|
| 534 |
{
|
| 535 |
"text": "์ด๋ฏธ์ง์ ์๋ ํ
์คํธ๋ฅผ ๊ทธ๋๋ก ์ฝ์ด์ ๋งํฌ๋ค์ด ํํ๋ก ์ ์ด์ฃผ์ธ์.",
|
| 536 |
"files": ["assets/additional-examples/3.png"],
|
| 537 |
}
|
| 538 |
],
|
| 539 |
-
|
| 540 |
-
|
| 541 |
[
|
| 542 |
{
|
| 543 |
"text": "์ด ํ์งํ์๋ ๋ฌด์จ ๋ฌธ๊ตฌ๊ฐ ์ ํ ์๋์?",
|
|
@@ -550,10 +564,12 @@ examples = [
|
|
| 550 |
"files": ["assets/sample-images/03.png"],
|
| 551 |
}
|
| 552 |
],
|
| 553 |
-
|
| 554 |
]
|
| 555 |
|
| 556 |
|
|
|
|
|
|
|
|
|
|
| 557 |
css = """
|
| 558 |
body {
|
| 559 |
background: linear-gradient(135deg, #667eea, #764ba2);
|
|
@@ -626,9 +642,9 @@ with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo:
|
|
| 626 |
web_search_checkbox = gr.Checkbox(
|
| 627 |
label="Web Search",
|
| 628 |
value=False,
|
| 629 |
-
info="Check to enable a SERPHouse web search before the chat reply"
|
| 630 |
)
|
| 631 |
-
#
|
| 632 |
web_search_text = gr.Textbox(
|
| 633 |
lines=1,
|
| 634 |
label="(Unused) Web Search Query",
|
|
@@ -653,8 +669,9 @@ with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo:
|
|
| 653 |
value=2000,
|
| 654 |
)
|
| 655 |
|
| 656 |
-
gr.Markdown("<br><br>")
|
| 657 |
|
|
|
|
| 658 |
with gr.Column(scale=7):
|
| 659 |
chat = gr.ChatInterface(
|
| 660 |
fn=run,
|
|
@@ -673,7 +690,7 @@ with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo:
|
|
| 673 |
system_prompt_box,
|
| 674 |
max_tokens_slider,
|
| 675 |
web_search_checkbox,
|
| 676 |
-
web_search_text, # ์ค์ ๋ก๋
|
| 677 |
],
|
| 678 |
stop_btn=False,
|
| 679 |
title="Vidraft-Gemma-3-27B",
|
|
@@ -689,7 +706,7 @@ with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo:
|
|
| 689 |
gr.Markdown("### Example Inputs (click to load)")
|
| 690 |
gr.Examples(
|
| 691 |
examples=examples,
|
| 692 |
-
inputs=[], #
|
| 693 |
cache_examples=False
|
| 694 |
)
|
| 695 |
|
|
|
|
| 22 |
import PyPDF2
|
| 23 |
|
| 24 |
##############################################################################
|
| 25 |
+
# SERPHouse API key from environment variable
|
| 26 |
##############################################################################
|
| 27 |
+
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
|
| 28 |
|
| 29 |
##############################################################################
|
| 30 |
+
# ๊ฐ๋จํ ํค์๋ ์ถ์ถ ํจ์ (์ฌ์ฉ์ ํ๋กฌํํธ -> ํค์๋)
|
|
|
|
| 31 |
##############################################################################
|
| 32 |
def extract_keywords(text: str, top_k: int = 5) -> str:
|
| 33 |
+
"""
|
| 34 |
+
๊ฐ์ฅ ๊ฐ๋จํ ์์:
|
| 35 |
+
1) ํ
์คํธ๋ฅผ ์๋ฌธ์๋ก
|
| 36 |
+
2) ์ํ๋ฒณ/์ซ์/๊ณต๋ฐฑ ์ ์ธ ๋ฌธ์ ์ ๊ฑฐ
|
| 37 |
+
3) ๊ณต๋ฐฑ ํ ํฐ ๋ถ๋ฆฌ
|
| 38 |
+
4) ์ ํ ํฐ n๊ฐ ์ถ์ถ
|
| 39 |
+
"""
|
| 40 |
text = text.lower()
|
|
|
|
| 41 |
text = re.sub(r"[^a-z0-9\s]", "", text)
|
|
|
|
| 42 |
tokens = text.split()
|
|
|
|
|
|
|
| 43 |
key_tokens = tokens[:top_k]
|
|
|
|
| 44 |
return " ".join(key_tokens)
|
| 45 |
|
| 46 |
##############################################################################
|
| 47 |
+
# SERPHouse Live endpoint ํธ์ถ (์์ 20๊ฐ์ ์ ๋ชฉ์ ์ป์)
|
|
|
|
| 48 |
##############################################################################
|
| 49 |
def do_web_search(query: str) -> str:
|
| 50 |
"""
|
| 51 |
+
SERPHouse ๋ผ์ด๋ธ ๊ฒ์ ํธ์ถ, ์์ 20๊ฐ ๊ฒฐ๊ณผ์ 'title'๋ง ๋ฌถ์ด์ ๋ฐํ.
|
|
|
|
| 52 |
"""
|
| 53 |
try:
|
| 54 |
url = "https://api.serphouse.com/serp/live"
|
|
|
|
| 58 |
"lang": "en",
|
| 59 |
"device": "desktop",
|
| 60 |
"serp_type": "web",
|
| 61 |
+
"num_result": "20", # ์์ 20๊ฐ ๊ฒฐ๊ณผ
|
| 62 |
"api_token": SERPHOUSE_API_KEY,
|
| 63 |
}
|
| 64 |
resp = requests.get(url, params=params, timeout=30)
|
| 65 |
+
resp.raise_for_status() # 4xx/5xx ์๋ฌ ์ ์์ธ
|
| 66 |
data = resp.json()
|
| 67 |
|
| 68 |
results = data.get("results", {})
|
|
|
|
| 70 |
if not organic:
|
| 71 |
return "No web search results found."
|
| 72 |
|
|
|
|
| 73 |
summary_lines = []
|
| 74 |
for idx, item in enumerate(organic[:20], start=1):
|
| 75 |
title = item.get("title", "No Title")
|
| 76 |
summary_lines.append(f"{idx}. {title}")
|
| 77 |
|
|
|
|
| 78 |
return "\n".join(summary_lines)
|
| 79 |
except Exception as e:
|
| 80 |
logger.error(f"Web search failed: {e}")
|
| 81 |
return f"Web search failed: {str(e)}"
|
| 82 |
|
| 83 |
|
| 84 |
+
##############################################################################
|
| 85 |
+
# ์์ ์ค์
|
| 86 |
+
##############################################################################
|
| 87 |
+
MAX_CONTENT_CHARS = 4000 # ๋๋ฌด ํฐ ํ์ผ์ ๋ง๊ธฐ ์ํด ์ต๋ 4000์๋ง ํ์
|
| 88 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
| 89 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
| 90 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
|
|
| 93 |
torch_dtype=torch.bfloat16,
|
| 94 |
attn_implementation="eager"
|
| 95 |
)
|
|
|
|
| 96 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
| 97 |
|
| 98 |
|
| 99 |
+
##############################################################################
|
| 100 |
# CSV, TXT, PDF ๋ถ์ ํจ์
|
| 101 |
+
##############################################################################
|
| 102 |
def analyze_csv_file(path: str) -> str:
|
| 103 |
+
"""
|
| 104 |
+
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์.
|
| 105 |
+
"""
|
| 106 |
try:
|
| 107 |
df = pd.read_csv(path)
|
| 108 |
+
# ์ต๋ 50ํ, 10์ด๊น์ง๋ง ํ์
|
| 109 |
if df.shape[0] > 50 or df.shape[1] > 10:
|
| 110 |
df = df.iloc[:50, :10]
|
| 111 |
df_str = df.to_string()
|
|
|
|
| 117 |
|
| 118 |
|
| 119 |
def analyze_txt_file(path: str) -> str:
|
| 120 |
+
"""
|
| 121 |
+
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์.
|
| 122 |
+
"""
|
| 123 |
try:
|
| 124 |
with open(path, "r", encoding="utf-8") as f:
|
| 125 |
text = f.read()
|
|
|
|
| 131 |
|
| 132 |
|
| 133 |
def pdf_to_markdown(pdf_path: str) -> str:
|
| 134 |
+
"""
|
| 135 |
+
PDF โ Markdown. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ.
|
| 136 |
+
"""
|
| 137 |
text_chunks = []
|
| 138 |
try:
|
| 139 |
with open(pdf_path, "rb") as f:
|
|
|
|
| 144 |
page_text = page.extract_text() or ""
|
| 145 |
page_text = page_text.strip()
|
| 146 |
if page_text:
|
| 147 |
+
# ํ์ด์ง๋ณ ํ
์คํธ ์ ํ
|
| 148 |
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
|
| 149 |
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
|
| 150 |
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
|
|
|
|
| 160 |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
| 161 |
|
| 162 |
|
| 163 |
+
##############################################################################
|
| 164 |
# ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ ๊ฒ์ฌ
|
| 165 |
+
##############################################################################
|
| 166 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
| 167 |
image_count = 0
|
| 168 |
video_count = 0
|
|
|
|
| 191 |
|
| 192 |
|
| 193 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
| 194 |
+
"""
|
| 195 |
+
- ๋น๋์ค 1๊ฐ ์ด๊ณผ ๋ถ๊ฐ
|
| 196 |
+
- ๋น๋์ค์ ์ด๋ฏธ์ง ํผํฉ ๋ถ๊ฐ
|
| 197 |
+
- ์ด๋ฏธ์ง ๊ฐ์(MAX_NUM_IMAGES) ์ด๊ณผ ๋ถ๊ฐ
|
| 198 |
+
- <image> ํ๊ทธ๊ฐ ์์ผ๋ฉด ํ๊ทธ ์์ ์ค์ ์ด๋ฏธ์ง ์ ์ผ์น
|
| 199 |
+
- CSV, TXT, PDF ๋ฑ์ ์ฌ๊ธฐ์ ์ ํํ์ง ์์
|
| 200 |
+
"""
|
| 201 |
media_files = []
|
| 202 |
for f in message["files"]:
|
| 203 |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
|
|
|
| 232 |
return True
|
| 233 |
|
| 234 |
|
| 235 |
+
##############################################################################
|
| 236 |
# ๋น๋์ค ์ฒ๋ฆฌ
|
| 237 |
+
##############################################################################
|
| 238 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
| 239 |
vidcap = cv2.VideoCapture(video_path)
|
| 240 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 241 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 242 |
+
frame_interval = max(int(fps), int(total_frames / 10))
|
| 243 |
frames = []
|
| 244 |
|
| 245 |
for i in range(0, total_frames, frame_interval):
|
|
|
|
| 270 |
return content
|
| 271 |
|
| 272 |
|
| 273 |
+
##############################################################################
|
| 274 |
# interleaved <image> ์ฒ๋ฆฌ
|
| 275 |
+
##############################################################################
|
| 276 |
def process_interleaved_images(message: dict) -> list[dict]:
|
| 277 |
parts = re.split(r"(<image>)", message["text"])
|
| 278 |
content = []
|
|
|
|
| 292 |
return content
|
| 293 |
|
| 294 |
|
| 295 |
+
##############################################################################
|
| 296 |
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
|
| 297 |
+
##############################################################################
|
| 298 |
def is_image_file(file_path: str) -> bool:
|
| 299 |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
| 300 |
|
|
|
|
| 302 |
return file_path.endswith(".mp4")
|
| 303 |
|
| 304 |
def is_document_file(file_path: str) -> bool:
|
| 305 |
+
return (
|
| 306 |
+
file_path.lower().endswith(".pdf")
|
| 307 |
+
or file_path.lower().endswith(".csv")
|
| 308 |
+
or file_path.lower().endswith(".txt")
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
|
| 312 |
def process_new_user_message(message: dict) -> list[dict]:
|
| 313 |
if not message["files"]:
|
|
|
|
| 339 |
|
| 340 |
if "<image>" in message["text"] and image_files:
|
| 341 |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
| 342 |
+
if content_list and content_list[0]["type"] == "text":
|
| 343 |
content_list = content_list[1:]
|
| 344 |
return interleaved_content + content_list
|
| 345 |
else:
|
|
|
|
| 349 |
return content_list
|
| 350 |
|
| 351 |
|
| 352 |
+
##############################################################################
|
| 353 |
# history -> LLM ๋ฉ์์ง ๋ณํ
|
| 354 |
+
##############################################################################
|
| 355 |
def process_history(history: list[dict]) -> list[dict]:
|
| 356 |
messages = []
|
| 357 |
current_user_content: list[dict] = []
|
|
|
|
| 378 |
return messages
|
| 379 |
|
| 380 |
|
| 381 |
+
##############################################################################
|
| 382 |
+
# ๋ฉ์ธ ์ถ๋ก ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg ๋ฐ์)
|
| 383 |
+
##############################################################################
|
| 384 |
@spaces.GPU(duration=120)
|
| 385 |
def run(
|
| 386 |
message: dict,
|
|
|
|
| 396 |
return
|
| 397 |
|
| 398 |
try:
|
| 399 |
+
# web_search๊ฐ True๋ฉด => ์ฌ์ฉ์๊ฐ ์ง์ ์
๋ ฅํ web_search_query ๋์ ,
|
| 400 |
+
# message["text"]๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํค์๋ ์ถ์ถํ์ฌ ๊ฒ์
|
| 401 |
+
history_system_msg = None
|
| 402 |
if use_web_search:
|
| 403 |
user_text = message["text"]
|
| 404 |
+
# 1) ํค์๋ ์ถ์ถ
|
| 405 |
ws_query = extract_keywords(user_text, top_k=5)
|
| 406 |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
| 407 |
+
# 2) ์์ 20๊ฐ ๊ฒฐ๊ณผ ๋ถ๋ฌ์ค๊ธฐ
|
| 408 |
ws_result = do_web_search(ws_query)
|
| 409 |
+
# 3) ์ด๋ฅผ system ๋ฉ์์ง๋ก ์ถ๊ฐ
|
| 410 |
system_search_content = f"[Search top-20 Titles Based on user prompt]\n{ws_result}\n"
|
|
|
|
|
|
|
| 411 |
if system_search_content.strip():
|
| 412 |
history_system_msg = {
|
| 413 |
"role": "system",
|
|
|
|
| 418 |
"role": "system",
|
| 419 |
"content": [{"type": "text", "text": "No web search results"}]
|
| 420 |
}
|
|
|
|
|
|
|
| 421 |
|
| 422 |
+
# ๊ธฐ์กด system prompt
|
| 423 |
messages = []
|
| 424 |
if system_prompt:
|
| 425 |
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
| 426 |
+
# web ๊ฒ์ ๊ฒฐ๊ณผ system msg
|
| 427 |
if history_system_msg:
|
| 428 |
messages.append(history_system_msg)
|
| 429 |
|
| 430 |
+
# ์ด์ ๋ํ์ด๋ ฅ(assistant/user)
|
| 431 |
messages.extend(process_history(history))
|
| 432 |
|
| 433 |
+
# ์ ์ ์ ๋ฉ์์ง ๋ณํ
|
| 434 |
user_content = process_new_user_message(message)
|
| 435 |
for item in user_content:
|
| 436 |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
| 437 |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
|
|
|
| 438 |
messages.append({"role": "user", "content": user_content})
|
| 439 |
|
| 440 |
+
# LLM ์
๋ ฅ ์์ฑ
|
| 441 |
inputs = processor.apply_chat_template(
|
| 442 |
messages,
|
| 443 |
add_generation_prompt=True,
|
|
|
|
| 460 |
for new_text in streamer:
|
| 461 |
output += new_text
|
| 462 |
yield output
|
| 463 |
+
|
| 464 |
except Exception as e:
|
| 465 |
logger.error(f"Error in run: {str(e)}")
|
| 466 |
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
| 467 |
|
| 468 |
|
| 469 |
+
##############################################################################
|
| 470 |
+
# ์์๋ค (ํ๊ธํ)
|
| 471 |
+
##############################################################################
|
| 472 |
examples = [
|
|
|
|
| 473 |
[
|
| 474 |
{
|
| 475 |
"text": "๋ PDF ํ์ผ ๋ด์ฉ์ ๋น๊ตํ๋ผ.",
|
|
|
|
| 477 |
"files": [
|
| 478 |
"assets/additional-examples/before.pdf",
|
| 479 |
"assets/additional-examples/after.pdf",
|
| 480 |
+
],
|
| 481 |
}
|
| 482 |
],
|
| 483 |
[
|
|
|
|
| 485 |
"text": "CSV ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ",
|
| 486 |
"files": ["assets/additional-examples/sample-csv.csv"],
|
| 487 |
}
|
| 488 |
+
],
|
| 489 |
[
|
| 490 |
{
|
| 491 |
"text": "์ด ์์์ ๋ด์ฉ์ ์ค๋ช
ํ๋ผ",
|
| 492 |
"files": ["assets/additional-examples/tmp.mp4"],
|
| 493 |
}
|
| 494 |
+
],
|
| 495 |
[
|
| 496 |
{
|
| 497 |
"text": "ํ์ง ๋ด์ฉ์ ์ค๋ช
ํ๊ณ ๊ธ์๋ฅผ ์ฝ์ด์ฃผ์ธ์.",
|
| 498 |
"files": ["assets/additional-examples/maz.jpg"],
|
| 499 |
}
|
| 500 |
+
],
|
| 501 |
[
|
| 502 |
{
|
| 503 |
"text": "์ด๋ฏธ ์ด ์์์ ๋ฅผ <image> ๊ฐ์ง๊ณ ์๊ณ , ์ด ์ ํ <image>์ ์๋ก ์ฌ๋ ค ํฉ๋๋ค. ํจ๊ป ์ญ์ทจํ ๋ ์ฃผ์ํด์ผ ํ ์ ์ด ์์๊น์?",
|
| 504 |
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
|
| 505 |
}
|
| 506 |
+
],
|
| 507 |
[
|
| 508 |
{
|
| 509 |
"text": "์ด ์ ๋ถ๏ฟฝ๏ฟฝ๏ฟฝ ํ์ด์ฃผ์ธ์.",
|
| 510 |
"files": ["assets/additional-examples/4.png"],
|
| 511 |
}
|
| 512 |
+
],
|
| 513 |
[
|
| 514 |
{
|
| 515 |
"text": "์ด ํฐ์ผ์ ์ธ์ ๋ฐ๊ธ๋ ๊ฒ์ด๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?",
|
| 516 |
"files": ["assets/additional-examples/2.png"],
|
| 517 |
}
|
| 518 |
+
],
|
| 519 |
[
|
| 520 |
{
|
| 521 |
"text": "์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.",
|
|
|
|
| 539 |
"text": "๋์ผํ ๋ง๋ ๊ทธ๋ํ๋ฅผ ๊ทธ๋ฆฌ๋ matplotlib ์ฝ๋๋ฅผ ์์ฑํด์ฃผ์ธ์.",
|
| 540 |
"files": ["assets/additional-examples/barchart.png"],
|
| 541 |
}
|
| 542 |
+
],
|
|
|
|
| 543 |
[
|
| 544 |
{
|
| 545 |
"text": "์ด ์ธ๊ณ์์ ์ด๊ณ ์์ ์๋ฌผ๋ค์ ์์ํด์ ๋ฌ์ฌํด์ฃผ์ธ์.",
|
| 546 |
"files": ["assets/sample-images/08.png"],
|
| 547 |
}
|
| 548 |
],
|
|
|
|
|
|
|
| 549 |
[
|
| 550 |
{
|
| 551 |
"text": "์ด๋ฏธ์ง์ ์๋ ํ
์คํธ๋ฅผ ๊ทธ๋๋ก ์ฝ์ด์ ๋งํฌ๋ค์ด ํํ๋ก ์ ์ด์ฃผ์ธ์.",
|
| 552 |
"files": ["assets/additional-examples/3.png"],
|
| 553 |
}
|
| 554 |
],
|
|
|
|
|
|
|
| 555 |
[
|
| 556 |
{
|
| 557 |
"text": "์ด ํ์งํ์๋ ๋ฌด์จ ๋ฌธ๊ตฌ๊ฐ ์ ํ ์๋์?",
|
|
|
|
| 564 |
"files": ["assets/sample-images/03.png"],
|
| 565 |
}
|
| 566 |
],
|
|
|
|
| 567 |
]
|
| 568 |
|
| 569 |
|
| 570 |
+
##############################################################################
|
| 571 |
+
# Gradio UI (Blocks) ๊ตฌ์ฑ
|
| 572 |
+
##############################################################################
|
| 573 |
css = """
|
| 574 |
body {
|
| 575 |
background: linear-gradient(135deg, #667eea, #764ba2);
|
|
|
|
| 642 |
web_search_checkbox = gr.Checkbox(
|
| 643 |
label="Web Search",
|
| 644 |
value=False,
|
| 645 |
+
info="Check to enable a SERPHouse web search (auto keywords) before the chat reply"
|
| 646 |
)
|
| 647 |
+
# ์ค์ ๋ก๋ ์๋์ถ์ถ. ์๋ textbox๋ ๋ฏธ์ฌ์ฉ.
|
| 648 |
web_search_text = gr.Textbox(
|
| 649 |
lines=1,
|
| 650 |
label="(Unused) Web Search Query",
|
|
|
|
| 669 |
value=2000,
|
| 670 |
)
|
| 671 |
|
| 672 |
+
gr.Markdown("<br><br>") # spacing
|
| 673 |
|
| 674 |
+
# Main ChatInterface to the right
|
| 675 |
with gr.Column(scale=7):
|
| 676 |
chat = gr.ChatInterface(
|
| 677 |
fn=run,
|
|
|
|
| 690 |
system_prompt_box,
|
| 691 |
max_tokens_slider,
|
| 692 |
web_search_checkbox,
|
| 693 |
+
web_search_text, # ์ค์ ๋ก๋ auto search
|
| 694 |
],
|
| 695 |
stop_btn=False,
|
| 696 |
title="Vidraft-Gemma-3-27B",
|
|
|
|
| 706 |
gr.Markdown("### Example Inputs (click to load)")
|
| 707 |
gr.Examples(
|
| 708 |
examples=examples,
|
| 709 |
+
inputs=[], # ๋งํฌํ inputs๊ฐ ์์ผ๋ฏ๋ก ๋น ๋ฆฌ์คํธ
|
| 710 |
cache_examples=False
|
| 711 |
)
|
| 712 |
|