CTP_Project / app.py
HassanDataSci's picture
Update app.py
d469986 verified
raw
history blame
1.47 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
import os
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
"""
Load the image classification pipeline using a pretrained model.
"""
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Load the BLOOM model for ingredient generation
@st.cache_resource
def load_bloom_pipeline():
"""
Load the BLOOM model for ingredient generation.
"""
return pipeline("text-generation", model="bigscience/bloom-1b7")
pipe_bloom = load_bloom_pipeline()
# Function to generate ingredients using BLOOM
def get_ingredients_bloom(food_name):
"""
Generate a list of ingredients for the given food item using BLOOM.
Returns a clean, comma-separated list of ingredients.
"""
prompt = (
f"Generate a list of the main ingredients used to prepare {food_name}. "
"Respond only with a concise, comma-separated list of ingredients, without any additional text, explanations, or placeholders. "
"For example, if the food is pizza, respond with 'cheese, tomato sauce, bread, olive oil, basil'."
)
try:
response = pipe_bloom(prompt, max_length=50, num_return_sequences=1)
generated_text = response[0]["generated_text"].strip()
# Post-process the response