File size: 1,471 Bytes
04f475a
e73380c
04f475a
7b63336
 
f825898
04f475a
f825898
800f4d4
 
 
04f475a
 
f825898
 
7013cc6
a27e928
7013cc6
a27e928
7013cc6
a27e928
7013cc6
a27e928
7013cc6
a27e928
d469986
7013cc6
800f4d4
7013cc6
3500d25
800f4d4
3500d25
a34ab64
 
 
3500d25
4bfa63a
7013cc6
3500d25
 
d469986
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
from transformers import pipeline
from PIL import Image
import os

# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
    """
    Load the image classification pipeline using a pretrained model.
    """
    return pipeline("image-classification", model="Shresthadev403/food-image-classification")

pipe_classification = load_image_classification_pipeline()

# Load the BLOOM model for ingredient generation
@st.cache_resource
def load_bloom_pipeline():
    """
    Load the BLOOM model for ingredient generation.
    """
    return pipeline("text-generation", model="bigscience/bloom-1b7")

pipe_bloom = load_bloom_pipeline()

# Function to generate ingredients using BLOOM
def get_ingredients_bloom(food_name):
    """
    Generate a list of ingredients for the given food item using BLOOM.
    Returns a clean, comma-separated list of ingredients.
    """
    prompt = (
        f"Generate a list of the main ingredients used to prepare {food_name}. "
        "Respond only with a concise, comma-separated list of ingredients, without any additional text, explanations, or placeholders. "
        "For example, if the food is pizza, respond with 'cheese, tomato sauce, bread, olive oil, basil'."
    )
    try:
        response = pipe_bloom(prompt, max_length=50, num_return_sequences=1)
        generated_text = response[0]["generated_text"].strip()
        
        # Post-process the response