Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,33 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import pipeline,
|
| 3 |
from PIL import Image
|
| 4 |
import requests
|
| 5 |
|
| 6 |
-
# Load the
|
| 7 |
-
st.title("Food Image Classification with Hugging Face")
|
| 8 |
-
st.write("Upload an image to classify the type of food!")
|
| 9 |
-
|
| 10 |
-
# Load the model
|
| 11 |
@st.cache_resource
|
| 12 |
-
def
|
| 13 |
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Upload image
|
| 18 |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|
|
@@ -24,13 +39,18 @@ if uploaded_file is not None:
|
|
| 24 |
st.write("Classifying...")
|
| 25 |
|
| 26 |
# Make predictions
|
| 27 |
-
predictions =
|
| 28 |
|
| 29 |
-
# Display top prediction
|
|
|
|
|
|
|
| 30 |
st.subheader("Top Prediction")
|
| 31 |
-
st.write(f"**{
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
st.subheader("
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from PIL import Image
|
| 4 |
import requests
|
| 5 |
|
| 6 |
+
# Load the image classification pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
@st.cache_resource
|
| 8 |
+
def load_image_classification_pipeline():
|
| 9 |
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
|
| 10 |
|
| 11 |
+
pipe_classification = load_image_classification_pipeline()
|
| 12 |
+
|
| 13 |
+
# Load the Meta-Llama model and tokenizer for text generation
|
| 14 |
+
@st.cache_resource
|
| 15 |
+
def load_llama_pipeline():
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
|
| 18 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 19 |
+
|
| 20 |
+
pipe_llama = load_llama_pipeline()
|
| 21 |
+
|
| 22 |
+
# Function to generate ingredients using Meta-Llama
|
| 23 |
+
def get_ingredients(food_name):
|
| 24 |
+
prompt = f"List the main ingredients typically used to prepare {food_name}:"
|
| 25 |
+
response = pipe_llama(prompt, max_length=50, num_return_sequences=1)
|
| 26 |
+
return response[0]['generated_text']
|
| 27 |
+
|
| 28 |
+
# Streamlit app
|
| 29 |
+
st.title("Food Image Classification with Ingredients Generation")
|
| 30 |
+
st.write("Upload an image to classify the type of food and get its ingredients!")
|
| 31 |
|
| 32 |
# Upload image
|
| 33 |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|
|
|
|
| 39 |
st.write("Classifying...")
|
| 40 |
|
| 41 |
# Make predictions
|
| 42 |
+
predictions = pipe_classification(image)
|
| 43 |
|
| 44 |
+
# Display only the top prediction
|
| 45 |
+
top_food = predictions[0]['label']
|
| 46 |
+
confidence = predictions[0]['score']
|
| 47 |
st.subheader("Top Prediction")
|
| 48 |
+
st.write(f"**{top_food}** with confidence {confidence:.2f}")
|
| 49 |
|
| 50 |
+
# Generate and display ingredients for the top prediction
|
| 51 |
+
st.subheader("Ingredients")
|
| 52 |
+
try:
|
| 53 |
+
ingredients = get_ingredients(top_food)
|
| 54 |
+
st.write(ingredients)
|
| 55 |
+
except Exception as e:
|
| 56 |
+
st.write("Could not generate ingredients. Please try again later.")
|