Spaces:
Sleeping
Sleeping
File size: 6,640 Bytes
04f475a e73380c 04f475a 29afa83 7b63336 66b1e61 f6d41de 7b63336 66b1e61 29afa83 e4d47cc 29afa83 04f475a f825898 04f475a f825898 29afa83 4bfa63a 29afa83 66b1e61 29afa83 66b1e61 29afa83 f83534a 29afa83 66b1e61 f83534a 66b1e61 f83534a 66b1e61 f83534a a151fc8 c412585 66b1e61 f83534a 66b1e61 f83534a 66b1e61 f83534a 66b1e61 f83534a 66b1e61 f83534a 66b1e61 c076606 66b1e61 f6d41de 66b1e61 44d1a69 2491fe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import streamlit as st
from transformers import pipeline
from PIL import Image
from huggingface_hub import InferenceClient
import os
import openai
from openai.error import OpenAIError
from gradio_client import Client
# Set page configuration
st.set_page_config(
page_title="Plate Mate - Your Culinary Assistant",
page_icon="🍽️",
layout="centered", # center content for better mobile experience
initial_sidebar_state="collapsed",
)
def local_css():
st.markdown(
"""
<style>
/* General resets */
body, html {
margin: 0;
padding: 0;
font-family: "Helvetica Neue", Arial, sans-serif;
background-color: #f9f9f9;
}
/* Container and spacing */
.css-1aumxhk, .css-keje6w, .css-18e3th9, .css-12oz5g7 {
padding-left: 0 !important;
padding-right: 0 !important;
}
/* Title styling */
.title h1 {
text-align: center;
font-size: 2.5em;
margin-bottom: 0.5em;
color: #333;
}
/* Subheader styling */
h2, h3, h4, h5, h6 {
color: #555;
margin-bottom: 0.5em;
}
/* Adjust image styling */
img {
max-width: 100%;
height: auto;
border-radius: 8px;
}
/* On mobile, reduce font sizes and margins */
@media (max-width: 600px) {
.title h1 {
font-size: 1.8em;
}
h2, h3, h4 {
font-size: 1em;
}
.stButton button {
width: 100%;
}
}
/* Sidebar adjustments */
[data-testid="stSidebar"] {
width: 250px;
background: #fff;
}
/* Preset images container */
.preset-container {
display: flex;
flex-wrap: wrap;
gap: 10px;
justify-content: center;
margin: 1em 0;
}
.preset-container img {
width: 80px;
height: 80px;
object-fit: cover;
cursor: pointer;
border: 2px solid transparent;
}
.preset-container img:hover {
border: 2px solid #007BFF;
}
</style>
""", unsafe_allow_html=True
)
local_css() # Apply the CSS
# Hugging Face API key
API_KEY = st.secrets["HF_API_KEY"]
client = InferenceClient(api_key=API_KEY)
@st.cache_resource
def load_image_classification_pipeline():
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
def get_ingredients_qwen(food_name):
messages = [
{
"role": "user",
"content": f"List only the main ingredients for {food_name}. "
f"Respond in a concise, comma-separated list without any extra text or explanations."
}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct", messages=messages, max_tokens=50
)
generated_text = completion.choices[0]['message']['content'].strip()
return generated_text
except Exception as e:
return f"Error generating ingredients: {e}"
openai.api_key = st.secrets["openai"]
st.markdown('<div class="title"><h1>PlateMate - Your Culinary Assistant</h1></div>', unsafe_allow_html=True)
# Banner Image (Smaller or optional)
banner_image_path = "IR_IMAGE.png"
if os.path.exists(banner_image_path):
# Display a smaller version of the banner
col1, col2, col3 = st.columns([1,3,1])
with col2:
st.image(banner_image_path, use_container_width=True)
else:
st.warning(f"Banner image '{banner_image_path}' not found.")
# Preset Images
preset_images = {
"Pizza": "sample_pizza.png",
"Salad": "sample_salad.png",
"Sushi": "sample_sushi.png"
}
selected_preset = st.selectbox("Or choose a preset sample image:", ["None"] + list(preset_images.keys()))
if selected_preset != "None":
uploaded_file = preset_images[selected_preset]
else:
uploaded_file = st.file_uploader("", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
if isinstance(uploaded_file, str):
# Use the preset image
if os.path.exists(uploaded_file):
image = Image.open(uploaded_file)
else:
st.error(f"Sample image '{uploaded_file}' not found.")
image = None
else:
image = Image.open(uploaded_file)
if image:
st.image(image, caption="Selected Image", use_container_width=True)
if st.button("Classify"):
with st.spinner("Classifying..."):
try:
predictions = pipe_classification(image)
if predictions:
top_food = predictions[0]['label']
confidence = predictions[0]['score']
st.header(f"🍽️ Food: {top_food} ({confidence*100:.2f}% confidence)")
# Generate ingredients
st.subheader("📝 Ingredients")
try:
ingredients = get_ingredients_qwen(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
# Healthier Alternatives
st.subheader("💡 Healthier Alternatives")
try:
# ONLY THIS PART CHANGED:
# Use the RAG calling method instead of the OpenAI function
client_rag = Client("https://9a8ccf4a3d4ad96ccf.gradio.live/")
result = client_rag.predict(query=f"What's a healthy {top_food} recipe, and why is it healthy?", api_name="/get_response")
st.write(result)
except OpenAIError as e:
st.error(f"OpenAI API error: {e}")
except Exception as e:
st.error(f"Unable to generate healthier alternatives: {e}")
else:
st.error("No predictions returned from the classification model.")
except Exception as e:
st.error(f"Error during classification: {e}")
else:
st.info("Please select or upload an image to get started.")
|