Spaces:
Sleeping
Sleeping
File size: 3,307 Bytes
04f475a e73380c 04f475a 7b63336 f825898 04f475a f825898 800f4d4 04f475a f825898 7013cc6 a27e928 7013cc6 a27e928 7013cc6 a27e928 7013cc6 a27e928 7013cc6 a27e928 7013cc6 800f4d4 7013cc6 3500d25 800f4d4 3500d25 a34ab64 3500d25 4bfa63a c1821da 3500d25 f83534a c1821da f83534a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import streamlit as st
from transformers import pipeline
from PIL import Image
import os
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
"""
Load the image classification pipeline using a pretrained model.
"""
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Load the BLOOM model for ingredient generation
@st.cache_resource
def load_bloom_pipeline():
"""
Load the BLOOM model for ingredient generation.
"""
return pipeline("text-generation", model="bigscience/bloom-1b7")
pipe_bloom = load_bloom_pipeline()
def get_ingredients_bloom(food_name):
"""
Generate a list of ingredients for the given food item using BLOOM.
Returns a clean, comma-separated list of ingredients.
"""
prompt = (
f"Generate a list of the main ingredients used to prepare {food_name}. "
"Respond only with a concise, comma-separated list of ingredients, without any additional text, explanations, or placeholders. "
"For example, if the food is pizza, respond with 'cheese, tomato sauce, bread, olive oil, basil'."
)
try:
# Generate response from the model
response = pipe_bloom(prompt, max_new_tokens=50, num_return_sequences=1)
generated_text = response[0]["generated_text"].strip()
# Post-process the response
ingredients = generated_text.split(":")[-1].strip() # Handle cases like "Ingredients: ..."
ingredients = ingredients.replace(".", "").strip() # Remove periods and extra spaces
# Validate the response to ensure no placeholders
if "ingredient1" in ingredients.lower() or "example" in ingredients.lower():
return "No valid ingredients found. Try again with a different food."
return ingredients
except Exception as e:
# Handle any errors that occur during the process
return f"Error generating ingredients: {e}"
# Streamlit app setup
st.title("Food Image Recognition with Ingredients")
# Add banner image
st.image("IR_IMAGE.png", caption="Food Recognition Model", use_column_width=True)
# Sidebar for model information
st.sidebar.title("Model Information")
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification")
st.sidebar.write("**LLM for Ingredients**: bigscience/bloom-1b7")
# Upload image
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Classifying...")
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("Ingredients")
try:
ingredients = get_ingredients_bloom(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
# Footer
st.sidebar.markdown("Created with ❤️ using Streamlit and Hugging Face.") |