|
|
|
https://huggingface.co/spaces/decodingdatascience/newrag-pine |
|
|
|
# π Telecom Customer Support LLM with Groq API |
|
|
|
This project demonstrates how to build a fast, production-grade AI-powered telecom customer support assistant using the **Groq API** and optimized GenAI configurations. |
|
|
|
## π Project Overview |
|
|
|
A step-by-step guide to: |
|
- Sending POST requests using **Postman** |
|
- Connecting to the **Groq API** |
|
- Testing default vs. optimized GenAI configurations |
|
- Applying structured **prompt templates** |
|
- Deploying a simple LLM-powered support API |
|
|
|
## π§ Tech Stack |
|
|
|
| Layer | Tool/Tech | |
|
|---------------|-------------------------| |
|
| LLM | [Groq API](https://groq.com/) | |
|
| API Platform | FastAPI / Postman | |
|
| Prompt Design | Custom templates | |
|
| Deployment | Localhost / Cloud (optional) | |
|
|
|
## π§ AI Configuration |
|
|
|
| Parameter | Description | |
|
|---------------------|--------------------------------------| |
|
| `temperature` | Controls randomness (default: 0.7) | |
|
| `top_p` | Nucleus sampling | |
|
| `max_tokens` | Max tokens to generate | |
|
| `frequency_penalty` | Repetition control | |
|
| `presence_penalty` | Topic diversity | |
|
|
|
## π Experiment Setup |
|
|
|
### 1. No Prompt Template + Default Config |
|
- Basic user input |
|
- Uses Groq defaults |
|
- For benchmarking |
|
|
|
### 2. With Prompt Template + Tuned Config |
|
- Structured input (e.g., role, intent, constraints) |
|
- Custom temperature and token limits |
|
- Optimized for domain-specific responses |
|
|
|
## π Quickstart |
|
|
|
### Step 1: Clone the repo |
|
|
|
```bash |
|
git clone https://github.com/your-username/telecom-support-llm.git |
|
cd telecom-support-llm |
|
|